Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NF-κB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia

Abstract

CD34+ bone marrow blasts from high-risk myelodysplastic syndrome (MDS) patients as well as MDS patient-derived cell lines (P39 and MOLM13) constitutively activate the nuclear factor-κB (NF-κB) pathway and undergo apoptosis when NF-κB is inhibited. Here, we show that the combination of conventional chemotherapeutic agents (daunorubicin, mitoxantrone, 5-azacytidine or camptothecin) with the NF-κB inhibitor BAY11-7082 did not yield a synergistic cytotoxicity. In contrast, BAY11-7082 (which targets the NF-κB-activating I-κB kinase (IKK) complex) or knockdown of essential components of the NF-κB system (such as the IKK1 and IKK2 subunits of the IKK complex and the p65 subunit of NF-κB), by small interfering RNAs sensitized MDS cell lines to starvation-induced apoptosis. The combination of BAY11-7082 and nutrient depletion synergistically killed the acute myeloid leukemia (AML) cell line U937 as well as primary CD34+ bone marrow blasts from AML and high-risk MDS patients. The synergistic killing by BAY11-7082, combined with nutrient depletion, led to cell death accompanied by all hallmarks of apoptosis, including an early loss of the mitochondrial transmembrane potential, the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, activation of caspase-3, phosphatidylserine exposure on the plasma membrane surface and nuclear chromatin condensation. Transmission electron microscopy revealed the presence of numerous autophagic vacuoles in the cytoplasm before cells underwent nuclear apoptosis. Nonetheless, cell death was neither inhibited by the pan-caspase inhibitor z-VAD-fmk nor by knockdown of AIF or of essential components of the autophagy pathway (ATG5, ATG6/Beclin-1, ATG10, ATG12). In contrast, external supply of glucose, insulin or insulin-like growth factor-I could retard the cell death induced by BAY11-7082 combined with starvation. These results suggest that in MDS cells, NF-κB inhibition can precipitate a bioenergetic crisis that leads to an autophagic stress response followed by apoptotic cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

AIF:

apoptosis-inducing factor

AML:

acute myeloid leukemia

AnnV:

annexin V

Atg:

autophagy relevant genes

AV:

autophagic vacuole

BAY:

BAY11-7082

Casp-3a:

activated caspase-3

Cyt. c:

cytochrome c

ΔΨm:

mitochondrial transmembrane potential

DAPI:

4′,6-diaminidino-2-phenylindole

DiOC6(3):

3,3′ dihexyloxacarbocyanine iodide

EBSS:

Earle's balanced salt solution

Endo G:

endonuclease G

FACS:

fluorescence-activated cell sorter

FCS:

fetal calf serum

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

Hsp60:

heat shock protein 60

IGF-I:

insulin-like growth factor-I

IκB:

inhibitor of NF-κB

IKK:

IκB kinase

MAIF:

mouse AIF

MDS:

myelodysplastic syndrome

NF-κB:

nuclear factor-κB

PI:

propidium iodide

siRNA:

small interfering RNA

z-VAD-fmk:

N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone.

References

  • Akdemir F, Farkas R, Chen P, Juhasz G, Medvedova L, Sass M et al. (2006). Autophagy occurs upstream or parallel to the apoptosome during histolytic cell death. Development 133: 1457–1465.

    Article  CAS  Google Scholar 

  • Birkenkamp KU, Geugien M, Schepers H, Westra J, Lemmink HH, Vellenga E . (2004). Constitutive NF-κB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia 18: 103–112.

    Article  CAS  Google Scholar 

  • Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N et al. (2005). Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25: 1025–1040.

    Article  CAS  Google Scholar 

  • Braun T, Carvalho G, Coquelle A, Vozenin MC, Lepelley P, Hirsch F et al. (2006a). NF-κB constitutes a potential therapeutic target in high-risk myelodysplastic syndromes. Blood 107: 1156–1165.

    Article  CAS  Google Scholar 

  • Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P, Kroemer G . (2006b). Targeting NF-κB in hematologic malignancies. Cell Death Differ 13: 748–758.

    Article  CAS  Google Scholar 

  • Carvalho G, Fabre C, Braun T, Grosjean J, Ades L, Agou F et al. (2006). Inhibition of NEMO, the regulatory subunit of the IKK complex, induces apoptosis in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene Oct 16 [Epub ahead of print].

  • Chipuk JE, Green DR . (2005). Do apoptotic pathways trigger caspase-independent cell death? Nat Rev Mol Cell Biol 6: 268–275.

    Article  CAS  Google Scholar 

  • Dombret H, Fenaux P, Soignet SL, Tallman MS . (2002). Established practice in the treatment of patients with acute promyleocytic leukemia and the introduction of arsenic trioxide as a novel therapy. Semin Hematol 39: 8–13.

    Article  CAS  Google Scholar 

  • Engedal N, Blomhoff HK . (2003). Combined action of ERK and NF-κB mediates the protective effect of phorbol ester on Fas-induced apoptosis in Jurkat cells. J Biol Chem 278: 10934–10941.

    Article  CAS  Google Scholar 

  • Fenaux P . (2005). Response assessments in low-risk and high-risk myelodysplastic syndromes (MDS). Semin Oncol 32: S11–S15.

    Article  Google Scholar 

  • Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil AA, Larochette N, Souquere S et al. (2005). The apoptosis/autophagy paradox. Accumulation of autophagic vacuoles triggers apoptosis. J Cell Sci 118: 3091–3102.

    Article  CAS  Google Scholar 

  • Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. (2001). NF-κB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98: 2301–2307.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Hassan Z, Fadeel B, Zhivotovsky B, Hellstrom-Lindberg E . (1999). Two pathways of apoptosis induced with all-trans retinoic acid and etoposide in the myeloid cell line P39. Exp Hematol 27: 1322–1329.

    Article  CAS  Google Scholar 

  • Igney FH, Krammer PH . (2002). Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2: 277–288.

    Article  CAS  Google Scholar 

  • Israel A, Kroemer G . (2006). NF-κB in life/death decisions: an introduction. Cell Death Differ 13: 685–686.

    Article  Google Scholar 

  • Karin M, Yamamoto Y, Wang QM . (2004). The IKK NF-κB system: a treasure trove for drug development. Nat Rev Drug Discov 3: 17–26.

    Article  CAS  Google Scholar 

  • Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux DL, Vandenabeele P et al. (2005). Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 12: 1463–1467.

    Article  CAS  Google Scholar 

  • Kroemer G, Jaattela M . (2005). Lysosomes and autophagy in cell death control. Nat Rev Cancer 5: 886–897.

    Article  CAS  Google Scholar 

  • Kroemer G, Martin SJ . (2005). Caspase-independent cell death. Nat Med 11: 725–730.

    Article  Google Scholar 

  • Levine B, Yuan J . (2005). Autophagy in cell death: an innocent convict? J Clin Invest 115: 2679–2688.

    Article  CAS  Google Scholar 

  • Lum JJ, Bauer DE, Kong M, Harris HM, Li C, Lindsten T et al. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237–248.

    Article  CAS  Google Scholar 

  • Luo JL, Kamata H, Karin M . (2005). IKK/NF-κB signaling: balancing life and death – a new approach to cancer therapy. J Clin Invest 115: 2625–2632.

    Article  CAS  Google Scholar 

  • Mani A, Gelmann EP . (2005). The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 23: 4776–4789.

    Article  CAS  Google Scholar 

  • Martin DN, Baehrecke EH . (2004). Caspases function in autophagic programmed cell death in Drosophila. Development 131: 275–284.

    Article  CAS  Google Scholar 

  • Matsuo Y, MacLeod RA, Uphoff CC, Drexler HG, Nishizaki C, Katayama Y et al. (1997). Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). Leukemia 11: 1469–1477.

    Article  CAS  Google Scholar 

  • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y . (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15: 1101–1111.

    Article  CAS  Google Scholar 

  • Modjtahedi N, Giordanetto F, Madeo F, Kroemer G . (2006). Apoptosis inducing factor (AIF): vital and lethal. Trends Cell Biol 16: 264–272.

    Article  CAS  Google Scholar 

  • Nagai M, Seki S, Kitahara T, Abe T, Minato K, Watanabe S et al. (1984). A novel human myelomonocytoid cell line, P39/Tsugane, derived from overt leukemia following myelodysplastic syndrome. Gann 75: 1100–1107.

    CAS  PubMed  Google Scholar 

  • Rajkumar SV, Richardson PG, Hideshima T, Anderson KC . (2005). Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 20: 630–639.

    Article  Google Scholar 

  • Ribrag V, Suzan F, Ravoet C, Feremans W, Guerci A, Dreyfus F et al. (2003). Phase II trial of CPT-11 in myelodysplastic syndromes with excess of marrow blasts. Leukemia 17: 319–322.

    Article  CAS  Google Scholar 

  • Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB et al. (2004). A role of Bcl-2 family of proteins in non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6: 1221–1228.

    Article  CAS  Google Scholar 

  • Shintani T, Klionsky DJ . (2004). Autophagy in health and disease: a double-edged sword. Science 306: 990–995.

    Article  CAS  Google Scholar 

  • Silverman LR, Mufti GJ . (2005). Methylation inhibitor therapy in the treatment of myelodysplastic syndrome. Nat Clin Pract Oncol 2: S12–S23.

    Article  CAS  Google Scholar 

  • Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Mastroberardini PG et al. (2004). AIF deficiency compromises oxidative phosphorylation. EMBO J 23: 4679–4689.

    Article  CAS  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S et al. (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304: 1500–1502.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CF, SB, ET, JG received fellowships from Fondation pour la Recherche Médicale, Deutsche Forschungsgemeinschaft and Institut National du Cancer, respectively. This work has been supported by grants from Association pour la Recherche contre le Cancer (to GK) and the European Union (TransDeath, RIGHT), Fondation de France (Comité Leucémies), Cancéropôle Ile-de-France, Ligue contre le Cancer (Département de Seine Saint Denis), Association Laurette Fugain (to GK) and the MDS Foundation (to TB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Kroemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabre, C., Carvalho, G., Tasdemir, E. et al. NF-κB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26, 4071–4083 (2007). https://doi.org/10.1038/sj.onc.1210187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210187

Keywords

This article is cited by

Search

Quick links