Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HPV16 E6 confers p53-dependent and p53-independent phenotypes in the epidermis of mice deficient for E6AP

Abstract

High-risk human papillomaviruses are the causative agents of cervical and other anogenital cancers. In these cancers, two viral oncogenes, E6 and E7, are expressed. E6 is best known for its ability to inactivate the tumor suppressor p53, which is thought to arise through ubiquitin-mediated degradation of p53 and involve a ternary complex between E6, p53 and the E3 ligase, E6AP. In mice transgenic for wild-type HPV16 E6, its expression leads to epithelial hyperplasia and an abrogation of normal cellular responses to DNA damage. Whereas only the latter phenotype is dependent upon E6's inactivation of p53, both are reduced in transgenic mice expressing an E6 mutant severely reduced in its binding to E6AP and other cellular proteins that bind E6 through a shared α-helix motif. Here, we investigated whether E6AP is required for the induction of the above phenotypes through the use of both E6AP-mutant and E6AP-null mice. E6, in the absence of E6AP retains an ability to induce epithelial hyperplasia, abrogate DNA damage responses and inhibit the induction of p53 protein following exposure to ionizing radiation. We conclude that E6 is able to induce both p53-dependent and p53-independent phenotypes through E6AP-independent pathways in the mouse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Arbeit JM, Howley PM, Hanahan D . (1996). Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc Natl Acad Sci USA 93: 2930–2935.

    Article  CAS  Google Scholar 

  • Band V, De Caprio JA, Delmolino L, Kulesa V, Sager R . (1991). Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol 65: 6671–6676.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC et al. (1992). Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci USA 89: 4549–4553.

    Article  CAS  Google Scholar 

  • Cooper B, Schneider S, Bohl J, Jiang Y, Beaudet A, Vande Pol S . (2003). Requirement of E6AP and the features of human papillomavirus E6 necessary to support degradation of p53. Virology 306: 87–99.

    Article  CAS  Google Scholar 

  • Dyson N, Howley PM, Munger K, Harlow E . (1989). The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–937.

    Article  CAS  Google Scholar 

  • Fei P, El-Deiry WS . (2003). P53 and radiation responses. Oncogene 22: 5774–5783.

    Article  CAS  Google Scholar 

  • Gao Q, Kumar A, Singh L, Huibregtse JM, Beaudenon S, Srinivasan S et al. (2002). Human papillomavirus E6-induced degradation of E6TP1 is mediated by E6AP ubiquitin ligase. Cancer Res 62: 3315–3321.

    CAS  PubMed  Google Scholar 

  • Gewin L, Galloway DA . (2001). E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc. J Virol 75: 7198–7201.

    Article  CAS  Google Scholar 

  • Gillison ML, Shah KV . (2001). Human papillomavirus-associated head and neck squamous cell carcinoma: mounting evidence for an etiologic role for human papillomavirus in a subset of head and neck cancers. Curr Opin Oncol 13: 183–188.

    Article  CAS  Google Scholar 

  • Grm HS, Banks L . (2004). Degradation of hDlg and MAGIs by human papillomavirus E6 is E6-AP-independent. J Gen Virol 85: 2815–2819.

    Article  Google Scholar 

  • Gross-Mesilaty S, Reinstein E, Bercovich B, Tobias KE, Schwartz AL, Kahana C et al. (1998). Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci USA 95: 8058–8063.

    Article  CAS  Google Scholar 

  • Hengstermann A, D'Silva M A, Kuballa P, Butz K, Hoppe-Seyler F, Scheffner M . (2005). Growth suppression induced by downregulation of E6-AP expression in human papillomavirus-positive cancer cell lines depends on p53. J Virol 79: 9296–9300.

    Article  CAS  Google Scholar 

  • Hengstermann A, Linares LK, Ciechanover A, Whitaker NJ, Scheffner M . (2001). Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc Natl Acad Sci USA 98: 1218–1223.

    Article  CAS  Google Scholar 

  • Herber R, Liem A, Pitot H, Lambert PF . (1996). Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J Virol 70: 1873–1881.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbert NL, Sedman SA, Schiller JT . (1992). Human papillomavirus type 16 E6 increases the degradation rate of p53 in human keratinocytes. J Virol 66: 6237–6241.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huibregtse JM, Scheffner M, Beaudenon S, Howley PM . (1995). A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 92: 5249.

    Article  CAS  Google Scholar 

  • Huibregtse JM, Scheffner M, Howley PM . (1991). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 10: 4129–4135.

    Article  CAS  Google Scholar 

  • Huibregtse JM, Scheffner M, Howley PM . (1993). Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol 13: 775–784.

    Article  CAS  Google Scholar 

  • Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G et al. (1998). Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21: 799–811.

    Article  CAS  Google Scholar 

  • Kelley ML, Keiger KE, Lee CJ, Huibregtse JM . (2005). The global transcriptional effects of the human papillomavirus E6 protein in cervical carcinoma cell lines are mediated by the E6AP ubiquitin ligase. J Virol 79: 3737–3747.

    Article  CAS  Google Scholar 

  • Kishino T, Lalande M, Wagstaff J . (1997). UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 15: 70–73.

    Article  CAS  Google Scholar 

  • Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB . (1992). Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89: 7491–7495.

    Article  CAS  Google Scholar 

  • Kuhne C, Banks L . (1998). E3-ubiquitin ligase/E6-AP links multicopy maintenance protein 7 to the ubiquitination pathway by a novel motif, the L2G box. J Biol Chem 273: 34302–34309.

    Article  CAS  Google Scholar 

  • Kumar A, Zhao Y, Meng G, Zeng M, Srinivasan S, Delmolino LM et al. (2002). Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol 22: 5801–5812.

    Article  CAS  Google Scholar 

  • Lee C, Laimins LA . (2004). Role of the PDZ domain-binding motif of the oncoprotein E6 in the pathogenesis of human papillomavirus type 31. J Virol 78: 12366–12377.

    Article  CAS  Google Scholar 

  • Liu X, Yuan H, Fu B, Disbrow GL, Apolinario T, Tomaic V et al. (2005). The E6-AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J Biol Chem 280: 10807–10816.

    Article  CAS  Google Scholar 

  • Massimi P, Gammoh N, Thomas M, Banks L . (2004). HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-mediated degradation. Oncogene 23: 8033–8039.

    Article  CAS  Google Scholar 

  • Matsumoto Y, Nakagawa S, Yano T, Takizawa S, Nagasaka K, Nakagawa K et al. (2006). Involvement of a cellular ubiquitin-protein ligase E6AP in the ubiquitin-mediated degradation of extensive substrates of high-risk human papillomavirus E6. J Med Virol 78: 501–507.

    Article  CAS  Google Scholar 

  • Matsuura T, Sutcliffe JS, Fang P, Galjaard RJ, Jiang YH, Benton CS et al. (1997). De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet 15: 74–77.

    Article  CAS  Google Scholar 

  • Miura K, Kishino T, Li E, Webber H, Dikkes P, Holmes GL et al. (2002). Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol Dis 9: 149–159.

    Article  CAS  Google Scholar 

  • Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R . (1989). The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63: 4417–4421.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Huibregtse JM . (2000). Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 20: 8244–8253.

    Article  CAS  Google Scholar 

  • Nakao M, Sutcliffe JS, Durtschi B, Mutirangura A, Ledbetter DH, Beaudet AL . (1994). Imprinting analysis of three genes in the Prader–Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum Mol Genet 3: 309–315.

    Article  CAS  Google Scholar 

  • Nguyen M, Song S, Liem A, Androphy E, Liu Y, Lambert PF . (2002). A mutant of human papillomavirus type 16 E6 deficient in binding alpha-helix partners displays reduced oncogenic potential in vivo. J Virol 76: 13039–13048.

    Article  CAS  Google Scholar 

  • Nguyen ML, Nguyen MM, Lee D, Griep AE, Lambert PF . (2003a). The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6's induction of epithelial hyperplasia in vivo. J Virol 77: 6957–6964.

    Article  CAS  Google Scholar 

  • Nguyen MM, Nguyen ML, Caruana G, Bernstein A, Lambert PF, Griep AE . (2003b). Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium. Mol Cell Biol 23: 8970–8981.

    Article  CAS  Google Scholar 

  • Nomine Y, Masson M, Charbonnier S, Zanier K, Ristriani T, Deryckere F et al. (2006). Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell 21: 665–678.

    Article  CAS  Google Scholar 

  • Pan H, Griep AE . (1994). Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev 8: 1285–1299.

    Article  CAS  Google Scholar 

  • Patel D, Huang SM, Baglia LA, McCance DJ . (1999). The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J 18: 5061–5072.

    Article  CAS  Google Scholar 

  • Pim D, Thomas M, Javier R, Gardiol D, Banks L . (2000). HPV E6 targeted degradation of the discs large protein: evidence for the involvement of a novel ubiquitin ligase. Oncogene 19: 719–725.

    Article  CAS  Google Scholar 

  • Riley RR, Duensing S, Brake T, Munger K, Lambert PF, Arbeit JM . (2003). Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res 63: 4862–4871.

    CAS  PubMed  Google Scholar 

  • Salvat C, Wang G, Dastur A, Lyon N, Huibregtse JM . (2004). The -4 phenylalanine is required for substrate ubiquitination catalyzed by HECT ubiquitin ligases. J Biol Chem 279: 18935–18943.

    Article  CAS  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . (1993). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495–505.

    Article  CAS  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.

    Article  CAS  Google Scholar 

  • Simonson SJ, Difilippantonio MJ, Lambert PF . (2005). Two distinct activities contribute to human papillomavirus 16 E6's oncogenic potential. Cancer Res 65: 8266–8273.

    Article  CAS  Google Scholar 

  • Song S, Gulliver GA, Lambert PF . (1998). Human papillomavirus type 16 E6 and E7 oncogenes abrogate radiation-induced DNA damage responses in vivo through p53-dependent and p53-independent pathways. Proc Natl Acad Sci USA 95: 2290–2295.

    Article  CAS  Google Scholar 

  • Song S, Liem A, Miller JA, Lambert PF . (2000). Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. Virology 267: 141–150.

    Article  CAS  Google Scholar 

  • Song S, Pitot HC, Lambert PF . (1999). The human papillomavirus type 16 E6 gene alone is sufficient to induce carcinomas in transgenic animals. J Virol 73: 5887–5893.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taketo M, Schroeder AC, Mobraaten LE, Gunning KB, Hanten G, Fox RR et al. (1991). FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci USA 88: 2065–2069.

    Article  CAS  Google Scholar 

  • Talis AL, Huibregtse JM, Howley PM . (1998). The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem 273: 6439–6445.

    Article  CAS  Google Scholar 

  • Thomas MC, Chiang CM . (2005). E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell 17: 251–264.

    Article  CAS  Google Scholar 

  • Traidej M, Chen L, Yu D, Agrawal S, Chen J . (2000). The roles of E6-AP and MDM2 in p53 regulation in human papillomavirus-positive cervical cancer cells. Antisense Nucleic Acid Drug Dev 10: 17–27.

    Article  CAS  Google Scholar 

  • Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189: 12–19.

    Article  CAS  Google Scholar 

  • Werness BA, Levine AJ, Howley PM . (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248: 76–79.

    Article  CAS  Google Scholar 

  • zur Hausen H . (1996). Papillomavirus infections – a major cause of human cancers. Biochim Biophys Acta 1288: F55–F78.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Drinkwater and Sugden for critical reading of the paper, members of the Lambert lab for helpful discussions and Lawrence Banks for the communication of unpublished observations. This study was supported by Grants CA098428, CA022443, CA014520 and CA009135 from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P F Lambert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shai, A., Nguyen, M., Wagstaff, J. et al. HPV16 E6 confers p53-dependent and p53-independent phenotypes in the epidermis of mice deficient for E6AP. Oncogene 26, 3321–3328 (2007). https://doi.org/10.1038/sj.onc.1210130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210130

Keywords

This article is cited by

Search

Quick links