Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Frequent epigenetic inactivation of cystatin M in breast carcinoma

Abstract

Cystatin M is a potent endogenous inhibitor of lysosomal cysteine proteases. In breast carcinoma, cystatin M expression is frequently downregulated. It has been shown that cystatin M expression suppressed growth and migration of breast cancer cells. We examined the methylation status of the CpG island promoter of cystatin M in four breast cancer cell lines (MDAMB231, ZR75-1, MCF7 and T47D), in 40 primary breast carcinoma and in corresponding normal tissue probes by combined bisulphite restriction analysis. To investigate the effects of cystatin M expression on the growth of breast carcinoma, cystatin M was transfected in T47D. The cystatin M promoter was highly methylated in all four-breast cancer cell lines. Primary breast tumours were significantly more frequently methylated compared to normal tissue samples (60 vs 25%; P=0.006 Fisher's exact test). Treatment of breast cancer cells with 5-aza-2′-deoxycytidine (5-Aza-CdR), reactivated the transcription of cystatin M. Transfection of breast carcinoma cells with cystatin M caused a 30% decrease in colony formation compared to control transfection (P=0.002). Our results show that cystatin M is frequently epigenetically inactivated during breast carcinogenesis and cystatin M expression suppresses the growth of breast carcinoma. These data suggest that cystatin M may encode a novel epigenetically inactivated candidate tumour suppressor gene.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

COBRA:

combined bisulphite restriction analysis

5-Aza-CdR:

5-aza-2′-deoxycytidine

RASSF1A :

Ras association domain family 1A

References

  • Abrahamson M, Alvarez-Fernandez M, Nathanson CM . (2003). Cystatins. Biochem Soc Symp 70: 179–199.

    Article  CAS  Google Scholar 

  • Ahuja N, Issa JP . (2000). Aging, methylation and cancer. Histol Histopathol 15: 835–842.

    CAS  PubMed  Google Scholar 

  • Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B et al. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93: 691–699.

    Article  CAS  Google Scholar 

  • Calkins CC, Sloane BF . (1995). Mammalian cysteine protease inhibitors: biochemical properties and possible roles in tumor progression. Biol Chem Hoppe Seyler 376: 71–80.

    CAS  PubMed  Google Scholar 

  • Cheng T, Hitomi K, van Vlijmen-Willems IM, de Jongh GJ, Yamamoto K, Nishi K et al. (2006). Cystatin M/E is a high affinity inhibitor of cathepsin v and cathepsin l by a reactive site that is distinct from the legumain-binding site. J Biol Chem 281: 15893–15899.

    Article  CAS  Google Scholar 

  • Clark SJ, Harrison J, Paul CL, Frommer M . (1994). High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22: 2990–2997.

    Article  CAS  Google Scholar 

  • Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP . (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25: 315–319.

    Article  CAS  Google Scholar 

  • Dammann R, Yang G, Pfeifer GP . (2001). Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Res 61: 3105–3109.

    CAS  PubMed  Google Scholar 

  • Frosch BA, Berquin I, Emmert-Buck MR, Moin K, Sloane BF . (1999). Molecular regulation, membrane association and secretion of tumor cathepsin B. Apmis 107: 28–37.

    Article  CAS  Google Scholar 

  • Guo M, House MG, Hooker C, Han Y, Heath E, Gabrielson E et al. (2004). Promoter hypermethylation of resected bronchial margins: a field defect of changes? Clin Cancer Res 10: 5131–5136.

    Article  CAS  Google Scholar 

  • Haider AS, Peters SB, Kaporis H, Cardinale I, Fei J, Ott J et al. (2006). Genomic analysis defines a cancer-specific gene expression signature for human squamous cell carcinoma and distinguishes malignant hyperproliferation from benign hyperplasia. J Invest Dermatol 126: 869–881.

    Article  CAS  Google Scholar 

  • Henskens YM, Veerman EC, Nieuw Amerongen AV . (1996). Cystatins in health and disease. Biol Chem Hoppe Seyler 377: 71–86.

    CAS  PubMed  Google Scholar 

  • Herman JG, Baylin SB . (2003). Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349: 2042–2054.

    Article  CAS  Google Scholar 

  • Jones PA, Baylin SB . (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428.

    Article  CAS  Google Scholar 

  • Jones PA, Taylor SM . (1980). Cellular differentiation, cytidine analogs and DNA methylation. Cell 20: 85–93.

    Article  CAS  Google Scholar 

  • Krepela E . (2001). Cysteine proteinases in tumor cell growth and apoptosis. Neoplasma 48: 332–349.

    CAS  PubMed  Google Scholar 

  • Lah TT, Kos J . (1998). Cysteine proteinases in cancer progression and their clinical relevance for prognosis. Biol Chem 379: 125–130.

    CAS  PubMed  Google Scholar 

  • Ni J, Abrahamson M, Zhang M, Fernandez MA, Grubb A, Su J et al. (1997). Cystatin E is a novel human cysteine proteinase inhibitor with structural resemblance to family 2 cystatins. J Biol Chem 272: 10853–10858.

    Article  CAS  Google Scholar 

  • Nomura T, Katunuma N . (2005). Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. J Med Invest 52: 1–9.

    Article  Google Scholar 

  • Shridhar R, Zhang J, Song J, Booth BA, Kevil CG, Sotiropoulou G et al. (2004). Cystatin M suppresses the malignant phenotype of human MDA-MB-435S cells. Oncogene 23: 2206–2215.

    Article  CAS  Google Scholar 

  • Song J, Jie C, Polk P, Shridhar R, Clair T, Zhang J et al. (2006). The candidate tumor suppressor CST6 alters the gene expression profile of human breast carcinoma cells: down-regulation of the potent mitogenic, motogenic, and angiogenic factor autotaxin. Biochem Biophys Res Commun 340: 175–182.

    Article  CAS  Google Scholar 

  • Sotiropoulou G, Anisowicz A, Sager R . (1997). Identification, cloning, and characterization of cystatin M, a novel cysteine proteinase inhibitor, down-regulated in breast cancer. J Biol Chem 272: 903–910.

    Article  CAS  Google Scholar 

  • Srivatsan ES, Chakrabarti R, Zainabadi K, Pack SD, Benyamini P, Mendonca MS et al. (2002). Localization of deletion to a 300 Kb interval of chromosome 11q13 in cervical cancer. Oncogene 21: 5631–5642.

    Article  CAS  Google Scholar 

  • Stenman G, Astrom AK, Roijer E, Sotiropoulou G, Zhang M, Sager R . (1997). Assignment of a novel cysteine proteinase inhibitor (CST6) to 11q13 by fluorescence in situ hybridization. Cytogenet Cell Genet 76: 45–46.

    Article  CAS  Google Scholar 

  • Strunnikova M, Schagdarsurengin U, Kehlen A, Garbe JC, Stampfer MR, Dammann R . (2005). Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter. Mol Cell Biol 25: 3923–3933.

    Article  CAS  Google Scholar 

  • Vigneswaran N, Wu J, Zacharias W . (2003). Upregulation of cystatin M during the progression of oropharyngeal squamous cell carcinoma from primary tumor to metastasis. Oral Oncol 39: 559–568.

    Article  CAS  Google Scholar 

  • Waki T, Tamura G, Sato M, Motoyama T . (2003). Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples. Oncogene 22: 4128–4133.

    Article  CAS  Google Scholar 

  • Xiong Z, Laird PW . (1997). COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25: 2532–2534.

    Article  CAS  Google Scholar 

  • Zeeuwen PL . (2004). Epidermal differentiation: the role of proteases and their inhibitors. Eur J Cell Biol 83: 761–773.

    Article  CAS  Google Scholar 

  • Zeeuwen PL, van Vlijmen-Willems IM, Egami H, Schalkwijk J . (2002). Cystatin M/E expression in inflammatory and neoplastic skin disorders. Br J Dermatol 147: 87–94.

    Article  CAS  Google Scholar 

  • Zhang J, Shridhar R, Dai Q, Song J, Barlow SC, Yin L et al. (2004). Cystatin m: a novel candidate tumor suppressor gene for breast cancer. Cancer Res 64: 6957–6964.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants BMBF FKZ01ZZ0104 and DFG DA552-1 to Reinhard Dammann and WR (FKZ13/13) to Undraga Schagdarsurengin and NIH Grant CA88873 to Gerd P Pfeifer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Dammann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schagdarsurengin, U., Pfeifer, G. & Dammann, R. Frequent epigenetic inactivation of cystatin M in breast carcinoma. Oncogene 26, 3089–3094 (2007). https://doi.org/10.1038/sj.onc.1210107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210107

Keywords

This article is cited by

Search

Quick links