Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Ikaros is a mutational target for lymphomagenesis in Mlh1-deficient mice

Abstract

Deficiencies in DNA mismatch repair (MMR) result in replication errors within key tumor suppressor genes or oncogenes, and cause hereditary nonpolyposis colorectal cancer (HNPCC). Hematological malignancy with microsatellite instability is also associated with defective MMR, but little is known about the target genes for MMR. Here we identified Ikaros, a master transcription factor of lymphoid lineage commitment and differentiation, as a mutational target in spontaneous and radiation-induced T-cell lymphomas in Mlh1-deficient mice. Three quarters of lymphomas lacked Ikaros protein expression, which resulted from a frameshift mutation that created a stop codon. Mononucleotide repeat sequences at 1029–1034(C)6 and 1567–1572(G)6 in Ikaros were mutational hot spots with a one-base deletion occurring with a frequency of 45 and 50%, respectively. Point mutations and splicing alterations were also observed. In total, 85% of the lymphomas showed aberrations in Ikaros. The characteristic of Mlh1-deficient lymphomas is harboring of multiple mutations simultaneously in the same tumor, displaying a combination of two frameshift mutations at different repeats, frameshift and point mutations, and/or deletion mutations. This is the first report of Ikaros mutations coupled with Mlh1 deficiency in lymphomagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X et al. (1996). Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13: 336–342.

    Article  CAS  Google Scholar 

  • Baross-Francis A, Makhani N, Liskay RM, Jirik FR . (2001). Elevated mutant frequencies and increased C: G → T: A transitions in Mlh1−/− versus Pms2−/− murine small intestinal epithelial cells. Oncogene 20: 619–625.

    Article  CAS  Google Scholar 

  • Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK et al. (1994). Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368: 258–261.

    Article  CAS  Google Scholar 

  • Campbell MR, Thang TY, Jirik FR, Andrew SE . (2000). Candidate mutator genes in mismatch repair-deficient thymic lymphomas: no evidence of mutations in the DNA polymerase delta gene. Carcinogenesis 21: 2281–2285.

    Article  CAS  Google Scholar 

  • De Vos M, Hayward BE, Charlton R, Taylor GR, Glaser AW, Picton S et al. (2006). PMS2 mutations in childhood cancer. J Natl Cancer Inst 98: 358–361.

    Article  CAS  Google Scholar 

  • Duval A, Hamelin R . (2002). Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62: 2447–2454.

    CAS  PubMed  Google Scholar 

  • Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J et al. (1993). The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038.

    Article  CAS  Google Scholar 

  • Georgopoulos K, Moore DD, Derfler B . (1992). Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258: 808–812.

    Article  CAS  Google Scholar 

  • Gu L, Cline-Brown B, Zhang F, Qiu L, Li GM . (2002). Mismatch repair deficiency in hematological malignancies with microsatellite instability. Oncogene 21: 5758–5764.

    Article  CAS  Google Scholar 

  • Kabbarah O, Mallon MA, Pfeifer JD, Edelmann W, Kucherlapati R, Goodfellow PJ . (2003). A panel of repeat markers for detection of microsatellite instability in murine tumors. Mol Carcinogen 38: 155–159.

    Article  CAS  Google Scholar 

  • Kakinuma S, Nishimura M, Kubo A, Nagai JY, Amasaki Y, Majima HJ et al. (2005). Frequent retention of heterozygosity for point mutations in p53 and Ikaros in N-ethyl-N-nitrosourea-induced mouse thymic lymphomas. Mutat Res 572: 132–141.

    Article  CAS  Google Scholar 

  • Kakinuma S, Nishimura M, Sasanuma S, Mita K, Suzuki G, Katsura Y et al. (2002). Spectrum of Znfn1a1 (Ikaros) inactivation and its association with loss of heterozygosity in radiogenic T-cell lymphomas in susceptible B6C3F1 mice. Radiat Res 157: 331–340.

    Article  CAS  Google Scholar 

  • Karlsson A, Soderkvist P, Zhuang SM . (2002). Point mutations and deletions in the znfn1a1/ikaros gene in chemically induced murine lymphomas. Cancer Res 62: 2650–2653.

    CAS  PubMed  Google Scholar 

  • Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R et al. (1993). Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75: 1215–1225.

    Article  CAS  Google Scholar 

  • Lowsky R, Magliocco A, Ichinohasama R, Reitmair A, Scott S, Henry M et al. (2000). MSH2-deficient murine lymphomas harbor insertion/deletion mutations in the transforming growth factor beta receptor type 2 gene and display low not high frequency microsatellite instability. Blood 95: 1767–1772.

    CAS  PubMed  Google Scholar 

  • Nakanishi M, Tanaka K, Takahashi T, Kyo T, Dohy H, Fujiwara M et al. (2001). Microsatellite instability in acute myelocytic leukaemia developed from A-bomb survivors. Int J Radiat Biol 77: 687–694.

    Article  CAS  Google Scholar 

  • Nakayama H, Ishimaru F, Avitahl N, Sezaki N, Fujii N, Nakase K et al. (1999). Decreases in Ikaros activity correlate with blast crisis in patients with chronic myelogenous leukemia. Cancer Res 59: 3931–3934.

    CAS  PubMed  Google Scholar 

  • Okano H, Saito Y, Miyazawa T, Shinbo T, Chou D, Kosugi S et al. (1999). Homozygous deletions and point mutations of the Ikaros gene in gamma-ray-induced mouse thymic lymphomas. Oncogene 18: 6677–6683.

    Article  CAS  Google Scholar 

  • Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC, Rosen CA et al. (1994). Mutation of a mutL homolog in hereditary colon cancer. Science 263: 1625–1629.

    Article  CAS  Google Scholar 

  • Papathanasiou P, Perkins AC, Cobb BS, Ferrini R, Sridharan R, Hoyne GF et al. (2003). Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity 19: 131–144.

    Article  CAS  Google Scholar 

  • Parsons R, Li GM, Longley MJ, Fang WH, Papadopoulos N, Jen J et al. (1993). Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75: 1227–1236.

    Article  CAS  Google Scholar 

  • Reitmair AH, Schmits R, Ewel A, Bapat B, Redston M, Mitri A et al. (1995). MSH2 deficient mice are viable and susceptible to lymphoid tumours. Nat Genet 11: 64–70.

    Article  CAS  Google Scholar 

  • Ricciardone MD, Ozcelik T, Cevher B, Ozdag H, Tuncer M, Gurgey A et al. (1999). Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Cancer Res 59: 290–293.

    CAS  PubMed  Google Scholar 

  • Shimada Y, Nishimura M, Kakinuma S, Ogiu T, Fujimoto H, Kubo A et al. (2003). Genetic susceptibility to thymic lymphomas and K-ras gene mutation in mice after exposure to X-rays and N-ethyl-N-nitrosourea. Int J Radiat Biol 79: 423–430.

    Article  CAS  Google Scholar 

  • Shimada Y, Nishimura M, Kakinuma S, Okumoto M, Shiroishi T, Clifton KH et al. (2000). Radiation-associated loss of heterozygosity at the Znfn1a1 (Ikaros) locus on chromosome 11 in murine thymic lymphomas. Radiat Res 154: 293–300.

    Article  CAS  Google Scholar 

  • Sun L, Crotty ML, Sensel M, Sather H, Navara C, Nachman J et al. (1999a). Expression of dominant-negative Ikaros isoforms in T-cell acute lymphoblastic leukemia. Clin Cancer Res 5: 2112–2120.

    CAS  PubMed  Google Scholar 

  • Sun L, Heerema N, Crotty L, Wu X, Navara C, Vassilev A et al. (1999b). Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci USA 96: 680–685.

    Article  CAS  Google Scholar 

  • Tokairin Y, Kakinuma S, Arai M, Nishimura M, Okamoto M, Ito E et al. (2006). Accelerated growth of intestinal tumours after radiation exposure in Mlh1-knockout mice: evaluation of the late effect of radiation on a mouse model of HNPCC. Int J Exp Pathol 87: 89–99.

    Article  Google Scholar 

  • Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M et al. (1996). Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5: 537–549.

    Article  CAS  Google Scholar 

  • Wang Q, Desseigne F, Lasset C, Saurin JC, Navarro C, Yagci T et al. (1997). Germline hMSH2 and hMLH1 gene mutations in incomplete HNPCC families. Int J Cancer 73: 831–836.

    Article  CAS  Google Scholar 

  • Winandy S, Wu P, Georgopoulos K . (1995). A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83: 289–299.

    Article  CAS  Google Scholar 

  • Woerner SM, Kloor M, Mueller A, Rueschoff J, Friedrichs N, Buettner R et al. (2005). Microsatellite instability of selective target genes in HNPCC-associated colon adenomas. Oncogene 24: 2525–2535.

    Article  CAS  Google Scholar 

  • Yao X, Buermeyer AB, Narayanan L, Tran D, Baker SM, Prolla TA et al. (1999). Different mutator phenotypes in Mlh1- versus Pms2-deficient mice. Proc Natl Acad Sci USA 96: 6850–6855.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr Michael Liskay (Department of Molecular and Medical Genetics, Oregon Health Sciences University, Oregon, USA) for providing the Mlh1-knockout mice and for the helpful comments on the manuscript. We thank Mizuho Igo and Eriko Obara for technical assistance, and the Division of Animal Facility staff for helps with laboratory analysis and animal maintenance. This study was supported partly by a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, a grant of ‘Ground-based Research Announcement for Space Utilization’ promoted by the Japan Space Forum and a grant from the Long-range Research Initiative of the Japan Chemical Industry Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kakinuma.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakinuma, S., Kodama, Y., Amasaki, Y. et al. Ikaros is a mutational target for lymphomagenesis in Mlh1-deficient mice. Oncogene 26, 2945–2949 (2007). https://doi.org/10.1038/sj.onc.1210100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210100

Keywords

Search

Quick links