Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of Akt inhibition on scatter factor-regulated gene expression in DU-145 human prostate cancer cells

Abstract

The cytokine scatter factor (SF) (hepatocyte growth factor) transduces various biologic actions, including cell motility, invasion, angiogenesis and apoptosis inhibition. The latter is relevant to understanding the role of SF in promoting tumor cell survival in different contexts, for example, detachment from basement membrane, growth in metastatic sites and responses to chemo- and radiotherapy. Previously, we showed that SF protects cells against apoptosis owing to DNA damage, by a mechanism involving phosphoinositol-3-kinase/c-Akt signaling. Here, we used DNA microarray assays to identify c-Akt-regulated genes that might contribute to cell protection. DU-145 human prostate cancer cells were transfected±a dominant-negative mutant Akt, treated±SF and analysed for gene expression using Affymetrix arrays. These studies identified SF-regulated genes for which induction was c-Akt-dependent vs -independent. Selected microarray findings were confirmed by semiquantitative and quantitative reverse transcription–polymerase chain reaction. We tested the contribution of four SF-inducible/c-Akt-dependent genes (AMPD3, EPHB2, MX1 and WNT4) to protection against adriamycin (a DNA topoisomerase IIα inhibitor) using RNA interference. Knockdown of each gene except EPHB2 caused a small but significant reduction in the SF cell protection. The lack of effect of EPHB2 knockdown may be due to the fact that DU-145 cells contain a single-mutant EPHB2 allele. A combination of three small interfering RNAs blocked most of the protection by SF in both DU-145 and T47D cells. These findings identify novel c-Akt-regulated genes, some of which contribute to SF-mediated cytoprotection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adam L, Vadlamudi R, Mandal M, Chernoff J, Kumar R . (2000). Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J Biol Chem 275: 12041–12050.

    Article  CAS  Google Scholar 

  • Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL et al. (1988). Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48: 589–601.

    CAS  PubMed  Google Scholar 

  • Bardelli A, Longati P, Albero D, Goruppi S, Schneider C, Ponzetto C et al. (1996). HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. EMBO J 15: 6205–6212.

    Article  CAS  Google Scholar 

  • Barry CP, Lind SE . (2000). Adenosine-mediated killing of cultured epithelial cancer cells. Cancer Res 60: 1887–1894.

    CAS  PubMed  Google Scholar 

  • Beppu K, Uchiyama A, Morisaki T, Nakamura K, Noshiro H, Matsumoto K et al. (2000). Elevation of serum hepatocyte growth factor concentration in patients with gastric cancer is mediated by production from tumor tissue. Anticancer Res 20: 1263–1267.

    CAS  PubMed  Google Scholar 

  • Bottaro DP, Rubin JS, Faletto DL, Chan AM-L, Kmiecik TE, Vande Woude GF et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251: 802–804.

    Article  CAS  Google Scholar 

  • Bowers DC, Fan S, Walter K, Abounader R, Williams JA, Rosen EM et al. (2000). Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res 60: 4277–4283.

    CAS  Google Scholar 

  • Brockman JA, Scherer DC, McKinsey TA, Hall SM, Qi X, Lee WY et al. (1995). Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Mol Cell Biol 15: 2809–2818.

    Article  CAS  Google Scholar 

  • Carter TH, Liu K, Ralph Jr W, Chen D, Qi M, Fan S et al. (2002). Diindolylmethane alters gene expression in human keratinocytes in vitro. J Nutr 132: 3314–3324.

    Article  CAS  Google Scholar 

  • Cong LN, Chen H, Li Y, Zhou L, McGibbon MA, Taylor SI et al. (1997). Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endocrinol 11: 1881–1890.

    Article  CAS  Google Scholar 

  • Cook SA, Matsui T, Li L, Rosenzweig A . (2002). Transcriptional effects of chronic Akt activation in the heart. J Biol Chem 277: 22528–22533.

    Article  CAS  Google Scholar 

  • Cutforth T, Harrison CJ . (2002). Ephs and ephrins close ranks. Trends Neurosci 25: 332–334.

    Article  CAS  Google Scholar 

  • Dworkin LD, Gong R, Tolbert E, Centracchio J, Yano N, Zanabli AR et al. (2004). Hepatocyte growth factor ameliorates progression of interstitial fibrosis in rats with established renal injury. Kidney Int 65: 409–419.

    Article  CAS  Google Scholar 

  • Engelhardt OG, Sirma H, Pier-Paolo Pandolfi PP, Haller O . (2004). Mx1 GTPase accumulates in distinct nuclear domains and inhibits influenza A virus in cells that lack promyelocytic leukaemia protein nuclear bodies. J Gen Virol 85: 2315–2326.

    Article  CAS  Google Scholar 

  • Fan S, Gao M, Meng Q, Laterra JJ, Symons MH, Coniglio S et al. (2005). Role of NF-kappaB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene 24: 1749–1766.

    Article  CAS  Google Scholar 

  • Fan S, Ma YX, Gao M, Yuan RQ, Meng Q, Goldberg ID et al. (2001). The multisubstrate adapter Gab1 regulates hepatocyte growth factor (scatter factor)-c-Met signaling for cell survival and DNA repair. Mol Cell Biol 21: 4968–4984.

    Article  CAS  Google Scholar 

  • Fan S, Ma YX, Wang J-A, Yuan R-Q, Meng Q, Laterra JJ et al. (2000). The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidylinositol 3′ kinase. Oncogene 19: 2212–2223.

    Article  CAS  Google Scholar 

  • Fan S, Wang J-A, Yuan R-Q, Rockwell S, Andres J, Zlatapolskiy A et al. (1998). Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents. Oncogene 17: 131–141.

    Article  CAS  Google Scholar 

  • Frisch SM, Francis H . (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124: 619–626.

    Article  CAS  Google Scholar 

  • Futamatsu H, Suzuki J, Mizuno S, Koga N, Adachi S, Kosuge H et al. (2005). Hepatocyte growth factor ameliorates the progression of experimental autoimmune myocarditis: a potential role for induction of T helper 2 cytokines. Circ Res 96: 823–830.

    Article  CAS  Google Scholar 

  • Gao M, Fan S, Goldberg ID, Laterra J, Kitsis RN, Rosen EM . (2001). Hepatocyte growth factor/scatter factor blocks the mitochondrial pathway of apoptosis signaling in breast cancer cells. J Biol Chem 276: 47257–47265.

    Article  CAS  Google Scholar 

  • Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgeirsson SS . (2004). Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci USA 101: 4477–4482.

    Article  CAS  Google Scholar 

  • Huusko P, Ponciano-Jackson D, Wolf M, Kiefer JA, Azorsa DO, Tuzmen S et al. (2004). Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat Genet 36: 979–983.

    Article  CAS  Google Scholar 

  • Jin L, Fuchs A, Schnitt SJ, Yao Y, Joseph A, Lamszus K et al. (1997). Expression of scatter factor and c-met receptor in benign and malignant breast tissue. Cancer 79: 749–760.

    Article  CAS  Google Scholar 

  • Kannan R, Jin ML, Gamulescu MA, Hinton DR . (2004). Ceramide-induced apoptosis: role of catalase and hepatocyte growth factor. Free Rad Biol Med 37: 166–175.

    Article  CAS  Google Scholar 

  • Kim HS, Skurk C, Maatz H, Shiojima I, Ivashchenko Y, Yoon SW et al. (2005). Akt/FOXO3a signaling modulates the endothelial stress response through regulation of heat shock protein 70 expression. FASEB J 19: 1042–1044.

    Article  CAS  Google Scholar 

  • Knudsen BS, Edlund M . (2004). Prostate cancer and the met hepatocyte growth factor receptor. Adv Cancer Res 91: 31–67.

    Article  CAS  Google Scholar 

  • Kuhn I, Bartholdi MF, Salamon H, Feldman RI, Roth RA, Johnson PH . (2001). Identification of AKT-regulated genes in inducible MERAkt cells. Physiol Genomics 7: 105–114.

    Article  CAS  Google Scholar 

  • Leiriao P, Albuquerque SS, Corso S, van Gemert GJ, Sauerwein RW, Rodriguez A et al. (2005). HGF/MET signalling protects Plasmodium-infected host cells from apoptosis. Cell Microbiol 7: 603–609.

    Article  CAS  Google Scholar 

  • Mahnke-Zizelman DK, Sabina RL . (2000). Localization of N-terminal sequences in human AMP deaminase isoforms that influence contractile protein binding. Biochem Biophys Res Commun 285: 489–495.

    Article  Google Scholar 

  • Majumder PK, Yeh JJ, George DJ, Febbo PG, Kum J, Xue Q et al. (2003). Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc Natl Acad Sci USA 100: 7841–7846.

    Article  CAS  Google Scholar 

  • Matteucci E, Modora S, Simone M, Desiderio MA . (2003). Hepatocyte growth factor induces apoptosis through the extrinsic pathway in hepatoma cells: favouring role of hypoxia-inducible factor-1 deficiency. Oncogene 22: 4062–4073.

    Article  CAS  Google Scholar 

  • Mitsiades CS, Mitsiades N, Koutsilieris M . (2004). The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 4: 235–256.

    Article  CAS  Google Scholar 

  • Rosen EM, Lamszus K, Laterra J, Polverini PJ, Rubin JS, Goldberg ID . (1997). HGF/SF in angiogenesis. Ciba Found Symp 212: 215–226.

    CAS  PubMed  Google Scholar 

  • Rosen EM, Nigam SK, Goldberg ID . (1994). Scatter factor and the c-met receptor: a paradigm for mesenchymal/epithelial interaction. J Cell Biol 127: 1783–1787.

    Article  CAS  Google Scholar 

  • Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W . (2000). Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol 149: 1419–1432.

    Article  CAS  Google Scholar 

  • Sliva D . (2004). Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Curr Cancer Drug Targets 4: 327–336.

    Article  CAS  Google Scholar 

  • Wang X, Zhou Y, Kim HP, Song R, Zarnegar R, Ryter SW et al. (2004). Hepatocyte growth factor protects against hypoxia/reoxygenation-induced apoptosis in endothelial cells. J Biol Chem 279: 5237–5243.

    Article  CAS  Google Scholar 

  • Xu J, Fan S, Rosen EM . (2005). Regulation of the estrogen-inducible gene expression profile by the breast cancer susceptibility gene BRCA1. Endocrinology 146: 2031–2047.

    Article  CAS  Google Scholar 

  • Yao HH, Matzuk MM, Jorgez CJ, Menke DB, Page DC, Swain A et al. (2004). Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn 230: 210–215.

    Article  CAS  Google Scholar 

  • Yuan R, Fan S, Achary M, Stewart DM, Goldberg ID, Rosen EM . (2001). Altered gene expression pattern in cultured human breast cancer cells treated with hepatocyte growth factor/scatter factor in the setting of DNA damage. Cancer Res 61: 8022–8031.

    CAS  PubMed  Google Scholar 

  • Zhang YW, Su Y, Volpert OV, Vande Woude GF . (2003). Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci USA 100: 12718–12723.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by United States Public Health Service grants RO1-ES09169, RO1-NS43987, and RO1-CA82599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E M Rosen.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Gao, M., Fan, S. et al. Effect of Akt inhibition on scatter factor-regulated gene expression in DU-145 human prostate cancer cells. Oncogene 26, 2925–2938 (2007). https://doi.org/10.1038/sj.onc.1210088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210088

Keywords

This article is cited by

Search

Quick links