Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Krüppel-like factor 4 exhibits antiapoptotic activity following γ-radiation-induced DNA damage

Abstract

In response to γ-radiation-induced DNA damage, organisms either activate cell cycle checkpoint and repair machinery or undergo apoptosis to eliminate damaged cells. Although previous studies indicated that the tumor suppressor p53 is critically involved in mediating both responses, how a cell decides which pathway to take is not well established. The zinc-finger-containing transcription factor, Krüppel-like factor 4 (KLF4), is a crucial mediator for the checkpoint functions of p53 after γ-irradiation and does so by inhibiting the transition from the G1 to S and G2 to M phases of the cell cycle. Here, we determined the role of KLF4 in modulating the apoptotic response following γ-irradiation. In three independent cell systems including colorectal cancer cells and mouse embryo fibroblasts in which expression of KLF4 could be manipulated, we observed that γ-irradiated cells underwent apoptosis if KLF4 was absent. In the presence of KLF4, the degree of apoptosis was significantly reduced and cells resorted to checkpoint arrest. The mechanism by which KLF4 accomplished this antiapoptotic effect is by activating expression of the cell cycle arrest gene, p21WAF1/CIP1, and by inhibiting the ability of p53 to transactivate expression of the proapoptotic gene, BAX. Results of our study illustrate an unexpected antiapoptotic function of KLF4, heretofore considered a tumor suppressor in colorectal cancer, and suggest that KLF4 may be an important determinant of cell fate following γ-radiation-induced DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

bp:

base pair

ChIP:

chromatin immunoprecipitation

DMEM:

Dulbecco's modified Eagle's medium

FACS:

fluorescence-activated cell sorting

FBS:

fetal bovine serum

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

KLF4:

Krüppel-like factor 4

MEFs:

mouse embryo fibroblasts

nt:

nucleotide

PBS:

phosphate-buffered saline

shRNA:

small hairpin RNA

References

  • Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG et al. (2004). Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24: 1219–1231.

    Article  CAS  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L et al. (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104: 263–269.

    Article  CAS  Google Scholar 

  • Chan TA, Hwang PM, Hermeking H, Kinzler KW, Vogelstein B . (2000). Cooperative effects of genes controlling the G(2)/M checkpoint. Genes Dev 14: 1584–1588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Johns DC, Geiman DE, Marban E, Dang DT, Hamlin G et al. (2001). Kruppel-like factor 4 (gut-enriched Kruppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle. J Biol Chem 276: 30423–30428.

    Article  CAS  Google Scholar 

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML et al. (1993). Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852.

    Article  CAS  Google Scholar 

  • Dang DT, Mahatan CS, Dang LH, Agboola IA, Yang VW . (2001). Expression of the gut-enriched Kruppel-like factor (Kruppel-like factor 4) gene in the human colon cancer cell line RKO is dependent on CDX2. Oncogene 20: 4884–4890.

    Article  CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  Google Scholar 

  • Erster S, Mihara M, Kim RH, Petrenko O, Moll UM . (2004). In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24: 6728–6741.

    Article  CAS  Google Scholar 

  • Fei P, El-Deiry WS . (2003). P53 and radiation responses. Oncogene 22: 5774–5783.

    Article  CAS  Google Scholar 

  • Foster KW, Liu Z, Nail CD, Li X, Fitzgerald TJ, Bailey SK et al. (2005). Induction of KLF4 in basal keratinocytes blocks the proliferation–differentiation switch and initiates squamous epithelial dysplasia. Oncogene 24: 1491–1500.

    Article  CAS  Google Scholar 

  • Foster KW, Ren S, Louro ID, Lobo-Ruppert SM, McKie-Bell P, Grizzle W et al. (1999). Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF. Cell Growth Differ 10: 423–434.

    CAS  PubMed  Google Scholar 

  • Garrett-Sinha LA, Eberspaecher H, Seldin MF, de Crombrugghe B . (1996). A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem 271: 31384–31390.

    Article  CAS  Google Scholar 

  • Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al. (1997). 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1: 3–11.

    Article  CAS  Google Scholar 

  • Jin S, Martinek S, Joo WS, Wortman JR, Mirkovic N, Sali A et al. (2000). Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci USA 97: 7301–7306.

    Article  CAS  Google Scholar 

  • Katz JP, Perreault N, Goldstein BG, Actman L, McNally SR, Silberg DG et al. (2005). Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology 128: 935–945.

    Article  CAS  Google Scholar 

  • Katz JP, Perreault N, Goldstein BG, Lee CS, Labosky PA, Yang VW et al. (2002). The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129: 2619–2628.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewanski CR, Gullick WJ . (2001). Radiotherapy and cellular signalling. Lancet Oncol 2: 366–370.

    Article  CAS  Google Scholar 

  • Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK et al. (2004). Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36: 63–68.

    Article  CAS  Google Scholar 

  • Lowe SW, Ruley HE, Jacks T, Housman DE . (1993a). p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967.

    Article  CAS  Google Scholar 

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T . (1993b). p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849.

    Article  CAS  Google Scholar 

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.

    Article  CAS  Google Scholar 

  • Miyashita T, Reed JC . (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299.

    Article  CAS  Google Scholar 

  • Rowland BD, Bernards R, Peeper DS . (2005). The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7: 1074–1082.

    Article  CAS  Google Scholar 

  • Rowland BD, Peeper DS . (2006). KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6: 11–23.

    Article  CAS  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW . (2002). Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1: 289–298.

    Article  CAS  Google Scholar 

  • Schumacher B, Hofmann K, Boulton S, Gartner A . (2001). The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol 11: 1722–1727.

    Article  CAS  Google Scholar 

  • Shields JM, Christy RJ, Yang VW . (1996). Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem 271: 20009–20017.

    Article  CAS  Google Scholar 

  • Shields JM, Yang VW . (1997). Two potent nuclear localization signals in the gut-enriched Kruppel-like factor define a subfamily of closely related Kruppel proteins. J Biol Chem 272: 18504–18507.

    Article  CAS  Google Scholar 

  • Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T et al. (1994). p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78: 703–711.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Waldman T, Kinzler KW, Vogelstein B . (1995). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  • Waldman T, Lengauer C, Kinzler KW, Vogelstein B . (1996). Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381: 713–716.

    Article  CAS  Google Scholar 

  • Waldman T, Zhang Y, Dillehay L, Yu J, Kinzler K, Vogelstein B et al. (1997). Cell-cycle arrest versus cell death in cancer therapy. Nat Med 3: 1034–1036.

    Article  CAS  Google Scholar 

  • Wei D, Gong W, Kanai M, Schlunk C, Wang L, Yao JC et al. (2005). Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res 65: 2746–2754.

    Article  CAS  Google Scholar 

  • Yoon HS, Chen X, Yang VW . (2003). Kruppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem 278: 2101–2105.

    Article  CAS  Google Scholar 

  • Yoon HS, Ghaleb AM, Nandan MO, Hisamuddin IM, Dalton WB, Yang VW . (2005). Kruppel-like factor 4 prevents centrosome amplification following gamma-irradiation-induced DNA damage. Oncogene 24: 4017–4025.

    Article  CAS  Google Scholar 

  • Yoon HS, Yang VW . (2004). Requirement of Kruppel-like factor 4 in preventing entry into mitosis following DNA damage. J Biol Chem 279: 5035–5041.

    Article  CAS  Google Scholar 

  • Yu J, Tiwari S, Steiner P, Zhang L . (2003). Differential apoptotic response to the proteasome inhibitor Bortezomib [VELCADE, PS-341] in Bax-deficient and p21-deficient colon cancer cells. Cancer Biol Ther 2: 694–699.

    CAS  PubMed  Google Scholar 

  • Yu J, Zhang L . (2005). The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331: 851–858.

    Article  CAS  Google Scholar 

  • Zhang W, Geiman DE, Shields JM, Dang DT, Mahatan CS, Kaestner KH et al. (2000). The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem 275: 18391–18398.

    Article  CAS  Google Scholar 

  • Zhang W, Shields JM, Sogawa K, Fujii-Kuriyama Y, Yang VW . (1998). The gut-enriched Kruppel-like factor suppresses the activity of the CYP1A1 promoter in an Sp1-dependent fashion. J Biol Chem 273: 17917–17925.

    Article  CAS  Google Scholar 

  • Zhao W, Hisamuddin IM, Nandan MO, Babbin BA, Lamb NE, Yang VW . (2004). Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 23: 395–402.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B Vogelstein for providing the pC53-SN3 expression construct and the HCT116BAX−/− and p21WAF1/CIP1−/− cell lines. This work was in part supported by grants from the National Institutes of Health (DK52230, DK64399 and CA84197). VWY is the recipient of a Georgia Cancer Coalition Distinguished Cancer Clinician Scientist Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V W Yang.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghaleb, A., Katz, J., Kaestner, K. et al. Krüppel-like factor 4 exhibits antiapoptotic activity following γ-radiation-induced DNA damage. Oncogene 26, 2365–2373 (2007). https://doi.org/10.1038/sj.onc.1210022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210022

Keywords

This article is cited by

Search

Quick links