Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

STAT1-independent inhibition of cyclooxygenase-2 expression by IFNγ; a common pathway of IFNγ-mediated gene repression but not gene activation

Abstract

Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in the synthesis of prostaglandins, promotes the development of colorectal cancer, and is a key molecular target of non-steroidal anti-inflammatory drugs, compounds that reduce the relative risk of developing colon cancer. In this study, we showed that interferon γ (IFNγ) inhibits the expression of COX-2 protein in intestinal epithelial cells (IECs) through a pathway that requires Janus-activated kinase (JAK) activity. In contrast, we demonstrated that transcriptional inhibition of COX-2 by IFNβ or IFNγ occurs in cells with silenced signal transducer and activator of transcription 1 (STAT1) expression and that IFNs retained the ability to inhibit COX-2 transcription in cells with activated RasV12, in which IFNγ failed to induce STAT1. Thus, unlike the activity of JAK, STAT1 is not required for the inhibition of COX-2 expression by IFNγ. In contrast to COX-2, the activation of genes in response to IFNγ, such as interferon regulatory factor-1, was severely impaired by both STAT1 silencing and by constitutive Ras signaling. To determine whether there is a general differential requirement for STAT1 in gene activation and gene repression in response to IFNγ in intestinal cells, we performed genome-wide analysis of IFNγ target genes in an IEC line in which STAT1 expression was silenced by small interfering RNA. The results confirmed that the activation of the majority of genes by IFNγ required STAT1. In contrast, the repression of several genes, as we showed for COX-2 specifically, was largely unaffected in cells with silenced STAT1. Our results therefore demonstrate that in general gene activation by IFNγ is more sensitive to STAT1 deficiency than gene repression, and suggest that IFNγ activates and represses gene expression via distinct pathways that can be distinguished, at least in part, by their requirement for STAT1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abril E, Real LM, Serrano A, Jimenez P, Garcia A, Canton J et al. (1998). Unresponsiveness to interferon associated with STAT1 protein deficiency in a gastric adenocarcinoma cell line. Cancer Immunol Immunother 47: 113–120.

    Article  CAS  Google Scholar 

  • Araki Y, Okamura S, Hussain SP, Nagashima M, He P, Shiseki M et al. (2003). Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res 63: 728–734.

    CAS  PubMed  Google Scholar 

  • Battcock SM, Collier TW, Zu D, Hirasawa K . (2006). Negative regulation of the alpha interferon-induced antiviral response by the Ras/Raf/MEK pathway. J Virol 80: 4422–4430.

    Article  CAS  Google Scholar 

  • Biasco G, Rossini FP, Hakim R, Brandi G, Di Battista M, Di Febo G et al. (2002). Cancer surveillance in ulcerative colitis: critical analysis of long-term prospective programme. Dig Liver Dis 34: 339–342.

    Article  CAS  Google Scholar 

  • Blache P, van de Wetering M, Duluc I, Domon C, Berta P, Freund JN et al. (2004). SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol 166: 37–47.

    Article  CAS  Google Scholar 

  • Blanco JC, Contursi C, Salkowski CA, DeWitt DL, Ozato K, Vogel SN . (2000). Interferon regulatory factor (IRF)-1 and IRF-2 regulate interferon gamma-dependent cyclooxygenase 2 expression. J Exp Med 191: 2131–2144.

    Article  CAS  Google Scholar 

  • Brown JR, DuBois RN . (2005). COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol 23: 2840–2855.

    Article  CAS  Google Scholar 

  • Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM et al. (2003). Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171: 6164–6172.

    Article  CAS  Google Scholar 

  • Clifford JL, Walch E, Yang X, Xu X, Alberts DS, Clayman GL et al. (2002). Suppression of type I interferon signaling proteins is an early event in squamous skin carcinogenesis. Clin Cancer Res 8: 2067–2072.

    CAS  PubMed  Google Scholar 

  • Deb A, Haque SJ, Mogensen T, Silverman RH, Williams BR . (2001). RNA-dependent protein kinase PKR is required for activation of NF-kappa B by IFN-gamma in a STAT1-independent pathway. J Immunol 166: 6170–6180.

    Article  CAS  Google Scholar 

  • Durbin JE, Hackenmiller R, Simon MC, Levy DE . (1996). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84: 443–450.

    Article  CAS  Google Scholar 

  • Dvorak HF . (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315: 1650–1659.

    Article  CAS  Google Scholar 

  • Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN . (1994). Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107: 1183–1188.

    Article  CAS  Google Scholar 

  • Gil MP, Bohn E, O'Guin AK, Ramana CV, Levine B, Stark GR et al. (2001). Biologic consequences of Stat1-independent IFN signaling. Proc Natl Acad Sci USA 98: 6680–6685.

    Article  CAS  Google Scholar 

  • Gupta RA, Dubois RN . (2001). Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1: 11–21.

    Article  CAS  Google Scholar 

  • Guy-Grand D, DiSanto JP, Henchoz P, Malassis-Seris M, Vassalli P . (1998). Small bowel enteropathy: role of intraepithelial lymphocytes and of cytokines (IL-12, IFN-gamma, TNF) in the induction of epithelial cell death and renewal. Eur J Immunol 28: 730–744.

    Article  CAS  Google Scholar 

  • Hanna N, Bonifacio L, Reddy P, Hanna I, Weinberger B, Murphy S et al. (2004). IFN-gamma-mediated inhibition of COX-2 expression in the placenta from term and preterm labor pregnancies. Am J Reprod Immunol 51: 311–318.

    Article  Google Scholar 

  • Higaki S, Akazawa A, Nakamura H, Yanai H, Yoshida T, Okita K . (1999). Metaplastic polyp of the colon develops in response to inflammation. J Gastroenterol Hepatol 14: 709–714.

    Article  CAS  Google Scholar 

  • Hu J, Roy SK, Shapiro PS, Rodig SR, Reddy SP, Platanias LC et al. (2001). ERK1 and ERK2 activate CCAAAT/enhancer-binding protein-beta-dependent gene transcription in response to interferon-gamma. J Biol Chem 276: 287–297.

    Article  CAS  Google Scholar 

  • Janabi N, Jensen PN, Major EO . (2004). Differential effects of interferon-gamma on the expression of cyclooxygenase-2 in high-grade human gliomas versus primary astrocytes. J Neuroimmunol 156: 113–122.

    Article  CAS  Google Scholar 

  • Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM et al. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22: 8031–8041.

    Article  Google Scholar 

  • Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ et al. (1998). Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95: 7556–7561.

    Article  CAS  Google Scholar 

  • Klampfer L, Huang J, Corner G, Mariadason J, Arango D, Sasazuki T et al. (2003a). Oncogenic k-ras inhibits the expression of IFN-responsive genes through inhibition of STAT1 and STAT2 expression. J Biol Chem 278: 46278–46287.

    Article  CAS  Google Scholar 

  • Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L . (2003b). Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol Cancer Res 1: 855–862.

    CAS  PubMed  Google Scholar 

  • Klampfer L, Huang J, Swaby LA, Augenlicht L . (2004). Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem 279: 30358–30368.

    Article  CAS  Google Scholar 

  • Kowanetz M, Valcourt U, Bergstrom R, Heldin CH, Moustakas A . (2004). Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor beta and bone morphogenetic protein. Mol Cell Biol 24: 4241–4254.

    Article  CAS  Google Scholar 

  • Landolfo S, Guarini A, Riera L, Gariglio M, Gribaudo G, Cignetti A et al. (2000). Chronic myeloid leukemia cells resistant to interferon-alpha lack STAT1 expression. Hematol J 1: 7–14.

    Article  CAS  Google Scholar 

  • Levy DE, Darnell Jr JE . (2002). Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3: 651–662.

    Article  CAS  Google Scholar 

  • Lindner DJ . (2002). Interferons as antiangiogenic agents. Curr Oncol Rep 4: 510–514.

    Article  Google Scholar 

  • Mariadason JM, Nicholas C, L'Italien KE, Zhuang M, Smartt HJ, Heerdt BG et al. (2005). Gene expression profiling of intestinal epithelial cell maturation along the crypt–villus axis. Gastroenterology 128: 1081–1088.

    Article  CAS  Google Scholar 

  • Matsuura H, Sakaue M, Subbaramaiah K, Kamitani H, Eling TE, Dannenberg AJ et al. (1999). Regulation of cyclooxygenase-2 by interferon gamma and transforming growth factor alpha in normal human epidermal keratinocytes and squamous carcinoma cells. Role of mitogen-activated protein kinases. J Biol Chem 274: 29138–29148.

    Article  CAS  Google Scholar 

  • Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS et al. (1996). Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84: 431–442.

    Article  CAS  Google Scholar 

  • Muller-Tidow C, Diederichs S, Thomas M, Serve H . (2004). Genome-wide screening for prognosis-predicting genes in early-stage non-small-cell lung cancer. Lung Cancer 45 (Suppl 2): S145–S150.

    Article  Google Scholar 

  • Navarro A, Anand-Apte B, Tanabe Y, Feldman G, Larner AC . (2003). A PI-3 kinase-dependent, Stat1-independent signaling pathway regulates interferon-stimulated monocyte adhesion. J Leukocyte Biol 73: 540–545.

    Article  CAS  Google Scholar 

  • Perk J, Iavarone A, Benezra R . (2005). Id family of helix–loop–helix proteins in cancer. Nat Rev Cancer 5: 603–614.

    Article  CAS  Google Scholar 

  • Qing Y, Stark GR . (2004). Alternative activation of STAT1 and STAT3 in response to interferon-gamma. J Biol Chem 279: 41679–41685.

    Article  CAS  Google Scholar 

  • Ramana CV, Gil MP, Han Y, Ransohoff RM, Schreiber RD, Stark GR . (2001). Stat1-independent regulation of gene expression in response to IFN-gamma. Proc Natl Acad Sci USA 98: 6674–6679.

    Article  CAS  Google Scholar 

  • Ramana CV, Gil MP, Schreiber RD, Stark GR . (2002). Stat1-dependent and -independent pathways in IFN-gamma-dependent signaling. Trends Immunol 23: 96–101.

    Article  CAS  Google Scholar 

  • Ramana CV, Grammatikakis N, Chernov M, Nguyen H, Goh KC, Williams BR et al. (2000). Regulation of c-myc expression by IFN-gamma through Stat1-dependent and -independent pathways. EMBO J 19: 263–272.

    Article  CAS  Google Scholar 

  • Ramsauer K, Sadzak I, Porras A, Pilz A, Nebreda AR, Decker T et al. (2002). p38 MAPK enhances STAT1-dependent transcription independently of Ser-727 phosphorylation. Proc Natl Acad Sci USA 99: 12859–12864.

    Article  CAS  Google Scholar 

  • Schindler C, Shuai K, Prezioso VR, Darnell Jr JE . (1992). Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 257: 809–813.

    Article  CAS  Google Scholar 

  • Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ et al. (2001). IFN gamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410: 1107–1111.

    Article  CAS  Google Scholar 

  • Sharma B, Iozzo RV . (1998). Transcriptional silencing of perlecan gene expression by interferon-gamma. J Biol Chem 273: 4642–4646.

    Article  CAS  Google Scholar 

  • Sheng H, Shao J, Dubois RN . (2001). K-Ras-mediated increase in cyclooxygenase 2 mRNA stability involves activation of the protein kinase B1. Cancer Res 61: 2670–2675.

    CAS  PubMed  Google Scholar 

  • Shirasawa S, Furuse M, Yokoyama N, Sasazuki T . (1993). Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 260: 85–88.

    Article  CAS  Google Scholar 

  • Shuai K, Schindler C, Prezioso VR, Darnell Jr JE . (1992). Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 258: 1808–1812.

    Article  CAS  Google Scholar 

  • Vila-del Sol V, Fresno M . (2005). Involvement of TNF and NF-kappa B in the transcriptional control of cyclooxygenase-2 expression by IFN-gamma in macrophages. J Immunol 174: 2825–2833.

    Article  CAS  Google Scholar 

  • Vinkemeier U, Cohen SL, Moarefi I, Chait BT, Kuriyan J, Darnell Jr JE . (1996). DNA binding of in vitro activated Stat1 alpha, Stat1 beta and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J 15: 5616–5626.

    Article  CAS  Google Scholar 

  • Wong LH, Krauer KG, Hatzinisiriou I, Estcourt MJ, Hersey P, Tam ND et al. (1997). Interferon-resistant human melanoma cells are deficient in ISGF3 components, STAT1, STAT2, and p48-ISGF3gamma. J Biol Chem 272: 28779–28785.

    Article  CAS  Google Scholar 

  • Wright KL, Weaver SA, Patel K, Coopman K, Feeney M, Kolios G et al. (2004). Differential regulation of prostaglandin E biosynthesis by interferon-gamma in colonic epithelial cells. Br J Pharmacol 141: 1091–1097.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Raymond DuBois for his generous gift of IEC-ikRas and IEC-ikRas-COX-2 5' cells. We are grateful to John Mariadason for his advice in analysing the microarray data and suggestions regarding the manuscript, and to Laura Bancroft for technical assistance. This study was supported by RO1 CA111361 (to LK), U54 CA100926 (to LA) and P30-13330 from the NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Klampfer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klampfer, L., Huang, J., Kaler, P. et al. STAT1-independent inhibition of cyclooxygenase-2 expression by IFNγ; a common pathway of IFNγ-mediated gene repression but not gene activation. Oncogene 26, 2071–2081 (2007). https://doi.org/10.1038/sj.onc.1210015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210015

Keywords

Search

Quick links