Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Collagen type I-induced Smad-interacting protein 1 expression downregulates E-cadherin in pancreatic cancer

Abstract

Pancreatic cancer is a devastating disease with poor prognosis. Production of large quantities of extracellular matrix and early metastasis are characteristics of this disease. One important step in the development of various cancers is the loss of E-cadherin gene expression or inactivation of E-cadherin mediated cell–cell adhesion. It has been shown that collagen type I promotes downregulation of E-cadherin expression, which correlates with enhanced cell migration and invasiveness. In this context, we elucidated the role of Smad-interacting protein 1 (SIP1), which has been discussed as a negative regulator of E-cadherin gene expression. We demonstrate that SIP1 upregulation shows an inverse relationship with E-cadherin in advanced pancreatic tumour stages. In Panc-1 cells, SIP1 expression can be induced by exposure to collagen type I in a src-dependent manner. In addition, overexpression of SIP1 reduces E-cadherin mRNA and protein levels. Taken together, these results suggest that SIP1 is involved in the progression of pancreatic cancer and plays a role in mediating signal transduction from collagen type I to downregulate E-cadherin expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Avizienyte E, Frame MC . (2005). Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol 17: 542–547.

    Article  CAS  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.

    Article  CAS  Google Scholar 

  • Berx G, Becker KF, Höfler H, van Roy F . (1998). Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 12: 226–237.

    Article  CAS  Google Scholar 

  • Birchmeier W, Behrens J . (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198: 11–26.

    CAS  PubMed  Google Scholar 

  • Blake RA, Broome MA, Liu X, Wu J, Gishizky M, Sun L et al. (2000). SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol 20: 9018–9027.

    Article  CAS  Google Scholar 

  • Cano A, Perez-Moreno M, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Article  CAS  Google Scholar 

  • Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7: 1267–1278.

    Article  CAS  Google Scholar 

  • D’Souza-Schorey C . (2005). Disassembling adherens junctions: breaking up is hard to do. Trends Cell Biol 15: 19–26.

    Article  Google Scholar 

  • Erickson AC, Barcellos-Hoff MH . (2003). The not-so innocent bystander: the microenvironment as a therapeutic target in cancer. Expert Opin Ther Targets 7: 71–88.

    Article  CAS  Google Scholar 

  • Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A et al. (1991). E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113: 173–185.

    Article  CAS  Google Scholar 

  • Hajra KM, Chen DYS, Fearon ER . (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62: 1613–1618.

    CAS  PubMed  Google Scholar 

  • Heidenblut AM, Lüttges J, Buchholz M, Heinitz C, Emmersen J, Nielsen KL et al. (2004). aRNA-longSAGE: a new approach to generate SAGE libraries from microdissected cells. Nucleic Acids Res 32: e131.

    Article  Google Scholar 

  • Hennig G, Behrens J, Truss M, Frisch S, Reichmann E, Birchmeier W . (1995). Progression of carcinoma cells is associated with alterations in chromatin structure and factor binding at the E-cadherin promoter in vivo. Oncogene 11: 475–484.

    CAS  PubMed  Google Scholar 

  • Long J, Zuo D, Park M . (2005). Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin. J Biol Chem 280: 35477–35489.

    Article  CAS  Google Scholar 

  • Maeda G, Chiba T, Okazaki M, Satoh T, Taya Y, Aoba T et al. (2005). Expression of SIP1 in oral squamous cell carcinomas: implications for E-cadherin expression and tumor progression. Int J Oncol 27: 1535–1541.

    CAS  PubMed  Google Scholar 

  • Menke A, Philippi C, Vogelmann R, Seidel B, Lutz MP, Adler G et al. (2001). Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res 61: 3508–3517.

    CAS  PubMed  Google Scholar 

  • Mikkers H, Allen J, Knipscheer P, Romeijn L, Hart A, Vink E et al. (2002). High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 32: 153–159.

    Article  CAS  Google Scholar 

  • Miyoshi A, Kitajima Y, Sumi K, Sato K, Hagiwara A, Koga Y et al. (2004). Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer 90: 1265–1273.

    Article  CAS  Google Scholar 

  • Mollenhauer J, Roether I, Kern HF . (1987). Distribution of extracellular matrix proteins in pancreatic ductal adenocarcinoma and its influence on tumor cell proliferation in vitro. Pancreas 2: 14–24.

    Article  CAS  Google Scholar 

  • Pignatelli M, Ansari TW, Gunter P, Liu D, Hirano S, Takeichi M et al. (1994). Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage. J Pathol 174: 243–248.

    Article  CAS  Google Scholar 

  • Postigo AA, Depp JL, Taylor JJ, Kroll KL . (2003). Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J 22: 2453–2462.

    Article  CAS  Google Scholar 

  • Remacle JE, Kraft H, Lerchner W, Wuytens G, Colart C, Verschueren K et al. (1999). New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J 18: 5073–5084.

    Article  CAS  Google Scholar 

  • Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R et al. (2002). Differential expression of the epithelial–mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 161: 1881–1891.

    Article  CAS  Google Scholar 

  • Seidel B, Braeg S, Adler G, Wedlich D, Menke A . (2004). E- and N-cadherin differ with respect to their associated p120ctn isoforms and their ability to suppress invasive growth in pancreatic cancer cells. Oncogene 23: 5532–5542.

    Article  CAS  Google Scholar 

  • Van de Putte T, Maruhashi M, Francis A, Nelles L, Kondoh H, Huylebroeck D et al. (2003). Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease–mental retardation syndrome. Am J Hum Genet 72: 465–470.

    Article  CAS  Google Scholar 

  • Van Grunsven LA, Michiels C, Van de Putte T, Nelles L, Wuytens G, Verschueren K et al. (2003). Interaction between Smad-interacting protein-1 and the corepressor C-terminal binding protein is dispensable for transcriptional repression of E-cadherin. J Biol Chem 278: 26135–26145.

    Article  CAS  Google Scholar 

  • Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P et al. (1999). SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 274: 20489–20498.

    Article  CAS  Google Scholar 

  • Vleminckx K, Vakaet Jr L, Mareel M, Fiers W, van Roy F . (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–119.

    Article  CAS  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.

    Article  CAS  Google Scholar 

  • Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S . (1995). Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci USA 92: 7416–7419.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Walter Birchmeier (MDC, Berlin, Germany) for the gift of the pCat-Ecad178 plasmid. This work was funded by the DFG, SFB 518.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Imamichi.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imamichi, Y., König, A., Gress, T. et al. Collagen type I-induced Smad-interacting protein 1 expression downregulates E-cadherin in pancreatic cancer. Oncogene 26, 2381–2385 (2007). https://doi.org/10.1038/sj.onc.1210012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210012

Keywords

This article is cited by

Search

Quick links