Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Novel role of WD40 and SOCS box protein-2 in steady-state distribution of granulocyte colony-stimulating factor receptor and G-CSF-controlled proliferation and differentiation signaling

Abstract

Signals induced by granulocyte colony-stimulating factor (G-CSF), the major cytokine involved in neutrophil development, are tightly controlled by ligand-induced receptor internalization. Truncated G-CSF receptors (G-CSF-Rs) that fail to internalize show sustained proliferation and defective differentiation signaling. Steady-state forward routing also determines cell surface levels of cytokine receptors, but mechanisms controlling this are poorly understood. Here, we show that WD40 and suppressor of cytokine signaling (SOCS) box protein-2 (Wsb-2), an SOCS box-containing WD40 protein with currently unknown function, binds to the COOH-terminal region of G-CSF-R. Removal of this region did not affect internalization, yet resulted in increased membrane expression of G-CSF-R and enhanced proliferation signaling at the expense of differentiation induction. Conversely, Wsb-2 binding to the G-CSF-R reduced its cell surface expression and inhibited proliferation signaling. These effects depended on the SOCS box involved in ubiquitylation and on cytosolic lysines of G-CSF-R and imply a major role for ubiquitylation through the G-CSF-R C-terminus in forward routing of the receptor. Importantly, the Wsb-2 gene is commonly disrupted by virus integrations in mouse leukemia. We conclude that control of forward routing of G-CSF-R is essential for a balanced response of myeloid progenitors to G-CSF and suggest that disturbance of this balance may contribute to myeloid leukemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Aarts LH, Roovers O, Ward AC, Touw IP . (2004). Receptor activation and 2 distinct COOH-terminal motifs control G-CSF receptor distribution and internalization kinetics. Blood 103: 571–579.

    Article  CAS  Google Scholar 

  • Aguilar RC, Wendland B . (2003). Ubiquitin: not just for proteasomes anymore. Curr Opin Cell Biol 15: 184–190.

    Article  CAS  Google Scholar 

  • Avalos BR . (1996). Molecular analysis of the granulocyte colony-stimulating factor receptor. Blood 88: 761–777.

    CAS  PubMed  Google Scholar 

  • de Koning JP, Soede-Bobok AA, Ward AC, Schelen AM, Antonissen C, van Leeuwen D et al. (2000). STAT3-mediated differentiation and survival and of myeloid cells in response to granulocyte colony-stimulating factor: role for the cyclin-dependent kinase inhibitor p27(Kip1). Oncogene 19: 3290–3298.

    Article  CAS  Google Scholar 

  • Demetri GD, Griffin JD . (1991). Granulocyte colony-stimulating factor and its receptor [Review] [170 refs]. Blood 78: 2791–2808.

    CAS  PubMed  Google Scholar 

  • Dentice M, Bandyopadhyay A, Gereben B, Callebaut I, Christoffolete MA, Kim BW et al. (2005). The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol 7: 698–705.

    Article  CAS  Google Scholar 

  • Dong F, Liu X, de Koning JP, Touw IP, Henninghausen L, Larner A et al. (1998). Stimulation of Stat5 by granulocyte colony-stimulating factor (G-CSF) is modulated by two distinct cytoplasmic regions of the G-CSF receptor. J Immunol 161: 6503–6509.

    CAS  PubMed  Google Scholar 

  • Dong F, Qiu Y, Yi T, Touw IP, Larner AC . (2001). The carboxyl terminus of the granulocyte colony-stimulating factor receptor, truncated in patients with severe congenital neutropenia/acute myeloid leukemia, is required for SH2-containing phosphatase-1 suppression of Stat activation. J Immunol 167: 6447–6452.

    Article  CAS  Google Scholar 

  • Dong F, van Buitenen C, Pouwels K, Hoefsloot LH, Lowenberg B, Touw IP . (1993). Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Mol Cell Biol 13: 7774–7781.

    Article  CAS  Google Scholar 

  • Erkeland SJ, Valkhof M, Heijmans-Antonissen C, Delwel R, Valk PJ, Hermans MH et al. (2003). The gene encoding the transcriptional regulator Yin Yang 1 (YY1) is a myeloid transforming gene interfering with neutrophilic differentiation. Blood 101: 1111–1117.

    Article  CAS  Google Scholar 

  • Erkeland SJ, Valkhof M, Heijmans-Antonissen C, van Hoven-Beijen A, Delwel R, Hermans MH et al. (2004). Large-scale identification of disease genes involved in acute myeloid leukemia. J Virol 78: 1971–1980.

    Article  CAS  Google Scholar 

  • Eyckerman S, Lemmens I, Lievens S, Van der Heyden J, Verhee A, Vandekerckhove J et al. (2002). Design and use of a mammalian protein–protein interaction trap (MAPPIT). Sci STKE 2002: PL18.

    PubMed  Google Scholar 

  • Eyckerman S, Verhee A, der Heyden JV, Lemmens I, Ostade XV, Vandekerckhove J et al. (2001). Design and application of a cytokine-receptor-based interaction trap. Nat Cell Biol 3: 1114–1119.

    Article  CAS  Google Scholar 

  • Fukunaga R, Ishizaka-Ikeda E, Nagata S . (1993). Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell 74: 1079–1087.

    Article  CAS  Google Scholar 

  • Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I . (2003). Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5: 461–466.

    Article  CAS  Google Scholar 

  • Hermans MH, Antonissen C, Ward AC, Mayen AE, Ploemacher RE, Touw IP . (1999). Sustained receptor activation and hyperproliferation in response to granulocyte colony-stimulating factor (G-CSF) in mice with a severe congenital neutropenia/acute myeloid leukemia-derived mutation in the G-CSF receptor gene. J Exp Med 189: 683–692.

    Article  CAS  Google Scholar 

  • Hermans MH, van de Geijn GJ, Antonissen C, Gits J, van Leeuwen D, Ward AC et al. (2003). Signaling mechanisms coupled to tyrosines in the granulocyte colony-stimulating factor receptor orchestrate G-CSF-induced expansion of myeloid progenitor cells. Blood 101: 2584–2590.

    Article  CAS  Google Scholar 

  • Heuze ML, Guibal FC, Banks CA, Conaway JW, Conaway RC, Cayre YE et al. (2005). ASB2 is an elongin BC-interacting protein that can assemble with cullin 5 and Rbx1 to reconstitute an E3 ubiquitin ligase complex. J Biol Chem 280: 5468–5474.

    Article  CAS  Google Scholar 

  • Hicke L, Dunn R . (2003). Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19: 141–172.

    Article  CAS  Google Scholar 

  • Hilton DJ, Richardson RT, Alexander WS, Viney EM, Willson TA, Sprigg NS et al. (1998). Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA 95: 114–119.

    Article  CAS  Google Scholar 

  • Hortner M, Nielsch U, Mayr LM, Johnston JA, Heinrich PC, Haan S . (2002). Suppressor of cytokine signaling-3 is recruited to the activated granulocyte-colony stimulating factor receptor and modulates its signal transduction. J Immunol 169: 1219–1227.

    Article  CAS  Google Scholar 

  • Hunter MG, Avalos BR . (1999). Deletion of a critical internalization domain in the G-CSFR in acute myelogenous leukemia preceded by severe congenital neutropenia. Blood 93: 440–446.

    CAS  PubMed  Google Scholar 

  • James P, Halladay J, Craig EA . (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144: 1425–1436.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamura T, Maenaka K, Kotoshiba S, Matsumoto M, Kohda D, Conaway RC et al. (2004). VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev 18: 3055–3065.

    Article  CAS  Google Scholar 

  • Kamura T, Sato S, Haque D, Liu L, Kaelin Jr WG, Conaway RC et al. (1998). The elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 12: 3872–3881.

    Article  CAS  Google Scholar 

  • Kario E, Marmor MD, Adamsky K, Citri A, Amit I, Amariglio N et al. (2005). Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling. J Biol Chem 280: 7038–7048.

    Article  CAS  Google Scholar 

  • Kumar KG, Krolewski JJ, Fuchs SY . (2004). Phosphorylation and specific ubiquitin acceptor sites are required for ubiquitination and degradation of the IFNAR1 subunit of type I interferon receptor. J Biol Chem 279: 46614–46620.

    Article  CAS  Google Scholar 

  • Kumar KG, Tang W, Ravindranath AK, Clark WA, Croze E, Fuchs SY . (2003). SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-alpha receptor. EMBO J 22: 5480–5490.

    Article  CAS  Google Scholar 

  • McLemore ML, Poursine-Laurent J, Link DC . (1998). Increased granulocyte colony-stimulating factor responsiveness but normal resting granulopoiesis in mice carrying a targeted granulocyte colony-stimulating factor receptor mutation derived from a patient with severe congenital neutropenia. J Clin Invest 102: 483–492.

    Article  CAS  Google Scholar 

  • Neer EJ, Smith TF . (2000). A groovy new structure. Proc Natl Acad Sci USA 97: 960–962.

    Article  CAS  Google Scholar 

  • Reynolds A, Anderson EM, Vermeulen A, Fedorov Y, Robinson K, Leake D et al. (2006). Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 12: 988–993.

    Article  CAS  Google Scholar 

  • Schnell JD, Hicke L . (2003). Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem 278: 35857–35860.

    Article  CAS  Google Scholar 

  • Smith TF, Gaitatzes C, Saxena K, Neer EJ . (1999). The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24: 181–185.

    Article  CAS  Google Scholar 

  • Tavernier J, Eyckerman S, Lemmens I, Van der Heyden J, Vandekerckhove J, Van Ostade X . (2002). MAPPIT: a cytokine receptor-based two-hybrid method in mammalian cells. Clin Exp Allergy 32: 1397–1404.

    Article  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121.

    Article  CAS  Google Scholar 

  • Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. (2004). Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350: 1617–1628.

    Article  CAS  Google Scholar 

  • van de Geijn GJ, Aarts LH, Erkeland SJ, Prasher JM, Touw IP . (2003). Granulocyte colony-stimulating factor and its receptor in normal hematopoietic cell development and myeloid disease. Rev Physiol Biochem Pharmacol 149: 53–71.

    Article  CAS  Google Scholar 

  • van De Geijn GJ, Gits J, Aarts LH, Heijmans-Antonissen C, Touw IP . (2004). G-CSF receptor truncations found in SCN/AML relieve SOCS3-controlled inhibition of STAT5 but leave suppression of STAT3. Blood 104: 667–674.

    Article  CAS  Google Scholar 

  • van Zon A, Mossink MH, Schoester M, Scheffer GL, Scheper RJ, Sonneveld P et al. (2002). Structural domains of vault proteins: a role for the coiled coil domain in vault assembly. Biochem Biophys Res Commun 291: 535–541.

    Article  CAS  Google Scholar 

  • Ward AC, Smith L, de Koning JP, van Aesch Y, Touw IP . (1999a). Multiple signals mediate proliferation, differentiation, and survival from the granulocyte colony-stimulating factor receptor in myeloid 32D cells. J Biol Chem 274: 14956–14962.

    Article  CAS  Google Scholar 

  • Ward AC, van Aesch YM, Schelen AM, Touw IP . (1999b). Defective internalization and sustained activation of truncated granulocyte colony-stimulating factor receptor found in severe congenital neutropenia/acute myeloid leukemia. Blood 93: 447–458.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Cancer Society, KWF kankerbestrijding (www.KWFkankerbestrijding.nl). We thank Dr Marieke von Lindern for helpful suggestions and comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I P Touw.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erkeland, S., Aarts, L., Irandoust, M. et al. Novel role of WD40 and SOCS box protein-2 in steady-state distribution of granulocyte colony-stimulating factor receptor and G-CSF-controlled proliferation and differentiation signaling. Oncogene 26, 1985–1994 (2007). https://doi.org/10.1038/sj.onc.1210004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210004

Keywords

This article is cited by

Search

Quick links