Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Proteomic identification of the wt-p53-regulated tumor cell secretome

Abstract

Tumor–stroma interactions play a major role in tumor development, maintenance and progression. Yet little is known on how the genetic alterations that underlie cell transformation elicit cell extrinsic changes modulating heterotypic cell interactions. We hypothesized that these events involve a modification in the complement of secreted proteins by the cell, acting as mediators of intercellular communication. To test this hypothesis, we examined the role of wt-p53, a major tumor suppressor, on the tumor microenvironment through its regulation of secreted factors. Using a combination of 2-DE and cICAT proteomic techniques, we found a total of 111 secreted proteins, 39 of which showed enhanced and 21 inhibited secretion in response to wt-p53 expression. The majority of these were not direct targets of p53 transcription factor activity, suggesting a novel role for wt-p53 in the control of intracellular protein trafficking and/or secreted protein stability. Evidence for p53-controlled post-translational modifications on nine secreted proteins was also found. These findings will enhance our understanding of wt-p53 modulated interactions of the tumor with its environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

β-2M:

beta-2-microglobulin

2-DE:

two-dimensional gel electrophoresis

cICAT, cleavable isotope-coded affinity tag technology; CM:

conditioned media

ECM:

extracellular matrix

FGF-4:

fibroblast growth factor-4

Gal-1:

Galectin-1

Gal-3:

galectin-3

Pre-alb:

pre-albumin

SPARC:

secreted protein with acidic and cysteine-rich domains

TGF-β:

transforming growth factor beta

TSP1:

thrombospondin-1

References

  • Albertoni MD, Daub M, Arden KC, Viars CS, Powell C, Van Meir EG . (1998). Genetic instability leads to loss of both p53 alleles in a human glioblastoma. Oncogene 16: 321–326.

    Article  CAS  PubMed  Google Scholar 

  • Albertoni M, Shaw PH, Nozaki M, Godard S, Tenan M, Hamou M-F et al. (2002). Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastoma cells independently of p53 and HIF-1. Oncogene 21: 4212–4219.

    Article  CAS  PubMed  Google Scholar 

  • Amzallag N, Passer BJ, Allanic D, Segura E, Thery C, Goud B et al. (2004). TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279: 46104–46112.

    Article  CAS  PubMed  Google Scholar 

  • Babic AM, Kireeva ML, Kolesnikova TV, Lau LF . (1998). CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci USA 95: 6355–6360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhowmick NA, Moses HL . (2005). Tumor–stroma interactions. Curr Opin Genet Dev 15: 97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brat DJ, Bellail AC, Van Meir EG . (2005). The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncol 7: 122–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueter M, Gasser M, Lebedeva T, Benichou G, Waaga-Gasser AM . (2006). Influence of p53 on anti-tumor immunity (review). Int J Oncol 28: 519–525.

    PubMed  Google Scholar 

  • Chiarugi V, Magnelli L, Gallo O . (1998). Cox-2, iNOS and p53 as play-makers of tumor angiogenesis (review). Int J Mol Med 2: 715–719.

    CAS  PubMed  Google Scholar 

  • Desbaillets I, Diserens AC, Tribolet N, Hamou MF, Van Meir EG . (1997). Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J Exp Med 186: 1201–1212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Framson PE, Sage EH . (2004). SPARC and tumor growth: where the seed meets the soil? J Cell Biochem 92: 679–690.

    Article  CAS  PubMed  Google Scholar 

  • Fulci G, Van Meir EG . (1999). p53 and the CNS: tumors and developmental abnormalities. Mol Neurobiol 19: 61–77.

    Article  CAS  PubMed  Google Scholar 

  • Goldman D, Merril CR, Ebert MH . (1980). Two-dimensional gel electrophoresis of cerebrospinal fluid proteins. Clin Chem 26: 1317–1322.

    CAS  PubMed  Google Scholar 

  • Görg A, Weiss W, Dunn MJ . (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics 4: 3665–3685.

    Article  PubMed  Google Scholar 

  • Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R . (2002). Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J Proteome Res 1: 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Harris SL, Levine AJ . (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24: 2899–2908.

    Article  CAS  PubMed  Google Scholar 

  • Kamemura K, Hart GW . (2003). Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. Prog Nucleic Acid Res Mol Biol 73: 107–136.

    Article  CAS  PubMed  Google Scholar 

  • Khwaja FW, Duke-Cohan JS, Brat DJ, Van Meir EG . (2006). Attractin is elevated in the cerebrospinal fluid (CSF) of patients with malignant astrocytoma and mediates glioma cell migration. Clinical Cancer Research, in press.

  • Lee R, Kermani P, Teng KK, Hempstead BL . (2001). Regulation of cell survival by secreted proneurotrophins. Science 294: 1945–1948.

    Article  CAS  PubMed  Google Scholar 

  • Mazzocca A, Coppari R, De Franco R, Cho JY, Libermann TA, Pinzani M et al. (2005). A secreted form of ADAM9 promotes carcinoma invasion through tumor–stromal interactions. Cancer Res 65: 4728–4738.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto I, Sasaki Y, Ishida S, Imai K, Tokino T . (2002). Identification of the osteopontin gene as a direct target of TP53. Genes Chromosomes Cancer 33: 270–278.

    Article  CAS  PubMed  Google Scholar 

  • Pietras K, Rubin K, Sjoblom T, Buchdunger E, Sjoquist M, Heldin CH et al. (2002). Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res 62: 5476–5484.

    CAS  PubMed  Google Scholar 

  • Qin G, Kishore R, Dolan CM, Silver M, Wecker A, Luedemann CN et al. (2006). Cell cycle regulator E2F1 modulates angiogenesis via p53-dependent transcriptional control of VEGF. Proc Natl Acad Sci USA 103: 11015–11020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele RJ, Lane DP . (2005). P53 in cancer: a paradigm for modern management of cancer. Surgeon 3: 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Stuelten CH, DaCosta Byfield S, Arany PR, Karpova TS, Stetler-Stevenson WG, Roberts AB . (2005). Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 118 (Part 10): 2143–2153.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cheung JM, Martel-Pelletier J, Pelletier JP, Wenger L, Altman RD et al. (2000). Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J Biol Chem 275: 11327–11332.

    Article  CAS  PubMed  Google Scholar 

  • Taieb J, Chaput N, Menard C, Apetoh L, Ullrich E, Bonmort M et al. (2006). A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 12: 214–219.

    Article  CAS  PubMed  Google Scholar 

  • Tenan M, Fulci G, Albertoni M, Diserens AC, Hamou MF, El Atifi-Borel M et al. (2000). Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J Exp Med 191: 1789–1798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai MS, Hornby AE, Lakins J, Lupu R . (2000). Expression and function of CYR61, an angiogenic factor, in breast cancer cell lines and tumor biopsies. Cancer Res 60: 5603–5607.

    CAS  PubMed  Google Scholar 

  • Tsuzuki T, Izumoto S, Ohnishi T, Hiraga S, Arita N, Hayakawa T . (1998). Neural cell adhesion molecule L1 in gliomas: correlation with TGF-beta and p53. J Clin Pathol 51: 13–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Meir EG, Polverini PJ, Chazin VR, Su Huang HJ, de Tribolet N, Cavenee WK . (1994). Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet 8: 171–176.

    Article  CAS  PubMed  Google Scholar 

  • Van Meir EG, Roemer K, Diserens A-C, Kikuchi T, Rempel SA, Haas M et al. (1995). Single-cell monitoring of growth arrest and morphological changes induced by transfer of wild type p53 alleles to glioblastoma cells. Proc Natl Acad Sci USA 92: 1008–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volmer MW, Stuhler K, Zapatka M, Schoneck A, Klein-Scory S, Schmiegel W et al. (2005). Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics 5: 2587–2601.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Shou J, Chen X . (2000). Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53. Oncogene 19: 1843–1848.

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Yin D, Wang HJ, Liu GT, Elashoff R, Black K et al. (2004). Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clin Cancer Res 10: 2072–2081.

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Harris SL, Levine AJ . (2006). The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66: 4795–4801.

    Article  CAS  PubMed  Google Scholar 

  • Zigrino P, Loffek S, Mauch C . (2005). Tumor-stroma interactions: their role in the control of tumor cell invasion. Biochimie 87: 321–328.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs JC Lucchesi, D Pallas, I Matsumura and P Vertino for their support. This work was supported by National Institutes of Health (NIH) grants CA 86335 (to EGVM); NCRR 02878, 12878, 13948 (to Microchemical and Proteomics Facility), the Pediatric Brain Tumor Foundation of the US (to EGVM) and the American Brain Tumor Association (to BP), the Genetics and Molecular Biology (GMB) program of the Graduate Division of Biological and Biomedical Sciences (GDBBS) of Emory University, and the National Science Foundation (NSF) (PRISM; DGE0231900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E G Van Meir.

Additional information

FWK and EGVM designed and interpreted experiments and wrote the manuscript. FWK performed experiments with the help of PS, MR and JP for the MS analyses. BP performed the microarrays and Northern blot. All authors read the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khwaja, F., Svoboda, P., Reed, M. et al. Proteomic identification of the wt-p53-regulated tumor cell secretome. Oncogene 25, 7650–7661 (2006). https://doi.org/10.1038/sj.onc.1209969

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209969

Keywords

This article is cited by

Search

Quick links