Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sustained leukaemic phenotype after inactivation of BCR-ABLp190 in mice

Abstract

Pharmacological inactivation of cancer genes or products is being used as a strategy for therapy in oncology. To investigate the potential role of BCR-ABLp190 cessation in leukaemia development, we generated mice carrying a tetracycline-repressible BCR-ABLp190 transgene. These mice were morphologically normal at birth, and developed leukaemias. Disease was characterized by the presence of B-cell blasts co-expressing myeloid markers, reminiscent of the human counterpart. BCR-ABLp190 activation can initiate leukaemia in both young and adult mice. Transitory expression of BCR-ABLp190 is enough to develop leukaemia. Suppression of the BCR-ABLp190 transgene in leukaemic CombitTA-p190 mice did not rescue the malignant phenotype, indicating that BCR-ABLp190 is not required to maintain the disease in mice. Similar results were obtained by inactivation of BCR-ABLp190 with STI571 (Gleevec; Novartis, East Hanover, NJ, USA) in leukaemic CombitTA-p190 mice. However, gradual suppression of BCR-ABLp190 in leukaemic CombitTA-p190 mice identified a minimum level of BCR-ABLp190 expression necessary to revert the specific block in B-cell differentiation in the leukaemic cells. Overall, the findings indicate that BCR-ABLp190 appears to cause epigenetic and/or genetic changes in tumour-maintaining cells that render them insensitive to BCR-ABLp190 inactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL et al. (2003). Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101: 4701–4707.

    Article  CAS  Google Scholar 

  • Chabner BA, Roberts Jr TG . (2005). Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 5: 65–72.

    Article  CAS  Google Scholar 

  • Chan LC, Karhi KK, Rayter SI, Heisterkamp N, Eridani S, Powles R et al. (1987). A novel abl protein expressed in Philadelphia chromosome-positive acute lymphoblastic leukemia. Nature 325: 635.

    Article  CAS  Google Scholar 

  • Choo Y, Sánchez-García I, Klug A . (1994). In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 372: 642.

    Article  CAS  Google Scholar 

  • Chu S, Xu H, Shah NP, Snyder DS, Forman SJ, Sawyers CL et al. (2005). Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood 105: 2093–2098.

    Article  CAS  Google Scholar 

  • Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON . (1987). Unique forms of the abl tyrosine kinase distinguish Ph′-Positive CML from Ph′-positive ALL. Science 235: 85.

    Article  CAS  Google Scholar 

  • Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M et al. (2000). A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia. Blood 95: 1007–1013.

    CAS  PubMed  Google Scholar 

  • Cobaleda C, Pérez-Losada J, Sánchez-García I . (1998). Chromosomal abnormalities and tumor development: from genes to therapeutic mechanisms. Bioessays 20: 922.

    Article  CAS  Google Scholar 

  • Copelan EA, McGuire EA . (1995). The biology and treatment of acute lymphoblastic leukemia in adults. Blood 85: 1151–1168.

    CAS  PubMed  Google Scholar 

  • Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A . (2004). Characterization of acute lymphoblastic leukemia progenitor cells. Blood 104: 2919–2925.

    Article  CAS  Google Scholar 

  • Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF . (2001b). Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344: 1038–1042.

    Article  CAS  Google Scholar 

  • Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. (2001a). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–1037.

    Article  CAS  Google Scholar 

  • Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2: 561–566.

    Article  CAS  Google Scholar 

  • Etzioni R, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J et al. (2003). The case for early detection. Nat Rev Cancer 3: 243–252.

    Article  CAS  Google Scholar 

  • Ford AM, Molgaard HV, Greaves MF, Gould HJ . (1983). Immunoglobulin gene organization and expression in hematopoietic stem cell leukemia. EMBO J 2: 997.

    Article  CAS  Google Scholar 

  • Garcia-Hernandez B, Castellanos A, Lopez A, Orfao A, Sanchez-Garcia I . (1997). Murine hematopoietic reconstitution after tagging and selection of retrovirally transduced bone marrow cells. Proc Natl Acad Sci USA 94: 13239–13244.

    Article  CAS  Google Scholar 

  • Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. (2002). Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99: 319–325.

    Article  CAS  Google Scholar 

  • Griffiths SD, Healy LE, Ford AM, Bennett CA, Voncken JW, Heisterkamp N et al. (1992). Clonal characteristics of acute lymphoblastic cells derived from BCR/ABL p190 transgenic mice. Oncogene 7: 1391–1399.

    CAS  PubMed  Google Scholar 

  • Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K . (1991). Resolution and characterization of pro-B and pre–pro-B cell stages in normal mouse bone marrow. J Exp Med 173: 1213–1225.

    Article  CAS  Google Scholar 

  • Hermans A, Heisterkamp N, von Lindern M, van Baal S, Meijer D, van der Plas D et al. (1987). Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell 51: 33.

    Article  CAS  Google Scholar 

  • Huettner CS, Zhang P, Van Etten RA, Tenen DG . (2000). Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 24: 57–60.

    Article  CAS  Google Scholar 

  • Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15: 3243–3248.

    Article  CAS  Google Scholar 

  • Kurzrock R, Shtalrid M, Rommero P, Kloetzer WS, Talpas M, Trujillo JM et al. (1987). A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukaemia. Nature 325: 631.

    Article  CAS  Google Scholar 

  • le Coutre P, Mologni L, Cleris L, Marchesi E, Buchdunger E, Giardini R et al. (1999). In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst 91: 163–168.

    Article  CAS  Google Scholar 

  • Mauro MJ, Druker BJ . (2001). STI571: targeting BCR-ABL as therapy for CML. Oncologist 6: 233–238.

    Article  CAS  Google Scholar 

  • Melo JV . (1996). The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88: 2375–2384.

    CAS  PubMed  Google Scholar 

  • Meuwissen R, Linn SC, van der Valk M, Mooi WJ, Berns A . (2001). Mouse model for lung tumorigenesis through Cre/lox controlled sporadic activation of the K-Ras oncogene. Oncogene 20: 6551–6558.

    Article  CAS  Google Scholar 

  • O’Dwyer ME, Druker BJ . (2001). The role of the tyrosine kinase inhibitor STI571 in the treatment of cancer. Curr Cancer Drug Targets 1: 49–57.

    Article  Google Scholar 

  • Palacios R, Karasuyama H, Rolink A . (1987). Ly1+ POR-B lymphocyte clones: phenotype, growth requirements and differentiation in vitro and in vivo. EMBO J 6: 3687.

    Article  CAS  Google Scholar 

  • Palacios R, Steinmetz M . (1985). Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 41: 727–734.

    Article  CAS  Google Scholar 

  • Perez-Caro M, Perez-Mancera PA, Voces F, Sanchez-Garcia I . (2005). Of Man in Mouse: modelling human cancer genotype-phenotype correlations in mice. Curr Genom 6: 81–88.

    Article  CAS  Google Scholar 

  • Perez-Mancera PA, Gonzalez-Herrero I, Perez-Caro M, Gutierrez-Cianca N, Flores T, Gutierrez-Adan A et al. (2005a). SLUG in cancer development. Oncogene 24: 3073–3082.

    Article  CAS  Google Scholar 

  • Perez-Mancera PA, Perez-Caro M, Gonzalez-Herrero I, Flores T, Orfao A, de Herreros AG et al. (2005b). Cancer development induced by graded expression of Snail in mice. Hum Mol Genet 14: 3449–3461.

    Article  CAS  Google Scholar 

  • Sanchez-Garcia I . (1997). Consequences of chromosomal abnormalities in tumor development. Annu Rev Genet 31: 429–453.

    Article  CAS  Google Scholar 

  • Sanchez-Garcia I, Grutz G . (1995). Tumorigenic activity of the BCR-ABL oncogenes is mediated by BCL2. Proc Natl Acad Sci USA 92: 5287–5291.

    Article  CAS  Google Scholar 

  • Savage DG, Antman KH . (2002). Imatinib mesylate – a new oral targeted therapy. N Engl J Med 346: 683–693.

    Article  CAS  Google Scholar 

  • Schultze N, Burki Y, Lang Y, Certa U, Bluethmann H . (1996). Efficient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nat Biotechnol 14: 499–503.

    Article  CAS  Google Scholar 

  • Secker-Walker LM . (1991). Distribution of Philadelphia positive acute lymphoblastic leukemia: geographical heterogeneity or age related incidence? Genes Chromosomes Cancer 3: 320–321.

    Article  CAS  Google Scholar 

  • Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. (2002). Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2: 117–125.

    Article  CAS  Google Scholar 

  • Skorski T, Nieborowska-Skorska M, Nicolaides NC, Szczylik C, Iverssen P, Iozzo RV et al. (1994). Suppression of Philadelphia leukemia cell growth in mice by BCR-ABL antisense oligodeoxynucleotide. Proc Natl Acad Sci USA 91: 4504.

    Article  CAS  Google Scholar 

  • Szczylik C, Skorski T, Nicolaides NC, Mancella L, Malaguarnera L, Venturelli D et al. (1991). Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science 253: 562.

    Article  CAS  Google Scholar 

  • Tabernero MD, Bortoluci AM, Alaejos I, Lopez-Berges MC, Rasillo A, Garcia-Sanz R et al. (2001). Adult precursor B-ALL with BCR/ABL gene rearrangements displays a unique immunophenotype based on the pattern of CD10, CD34, CD13 and CD38 expression. Leukemia 15: 406–414.

    Article  CAS  Google Scholar 

  • Towatari M, Yanada M, Usui N, Takeuchi J, Sugiura I, Takeuchi M et al. (2004). Combination of intensive chemotherapy and imatinib can rapidly induce high-quality complete remission for a majority of patients with newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia. Blood 104: 3507–3512.

    Article  CAS  Google Scholar 

  • Van Etten RA . (2001). Models of chronic myeloid leukemia. Curr Oncol Rep 3: 228–237.

    Article  CAS  Google Scholar 

  • Wendel HG, de Stanchina E, Cepero E, Ray S, Emig M, Fridman JS et al. (2006). Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci USA 103: 7444–7449.

    Article  CAS  Google Scholar 

  • Williams RT, Roussel MF, Sherr CJ . (2006). Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc Natl Acad Sci USA 103: 6688–6693.

    Article  CAS  Google Scholar 

  • Wolff NC, Ilaria Jr RL . (2001). Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood 98: 2808–2816.

    Article  CAS  Google Scholar 

  • Zhao RCH, McIvor RS, Griffin JD, Verfaillie CM . (1997). Gene therapy for chronic myelogenous leukaemia (CML): a retroviral vector that renders hematopoietic progenitors methotrexate-resistant and CML progenitors functionally normal and nontumorigenic in vivo. Blood 90: 4687.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of lab 13 at IBMCC for their helpful comments and constructive discussions on this project. Research in our group is supported partially by FEDER and by MEC (SAF2003-01103, and PETRI No. 95-0913.OP), Junta de Castilla y León (CSI03A05), FIS (PI050087, PI050116, G03/179 and G03/136), Fundación de Investigación MMA, Federación de Cajas de Ahorro Castilla y León (I Convocatoria de Ayudas para Proyectos de Investigación Biosanitaria con Células Madre) and CDTEAM project. MPC is a postdoctoral fellow supported by G03/136 and G03/179 networks. MSM research is supported by FIS grant no PI041271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Sánchez-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Caro, M., Gutierrez-Cianca, N., González-Herrero, I. et al. Sustained leukaemic phenotype after inactivation of BCR-ABLp190 in mice. Oncogene 26, 1702–1713 (2007). https://doi.org/10.1038/sj.onc.1209968

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209968

Keywords

This article is cited by

Search

Quick links