Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation

Abstract

Overexpression and hyperactivation of the type I insulin-like growth factor receptor (IGF-IR) has been observed in human breast tumor biopsies. In addition, in vitro studies indicate that overexpression of IGF-IR is sufficient to transform cells such as mouse embryo fibroblasts and this receptor promotes proliferation and survival in breast cancer cell lines. To fully understand the function of the IGF-IR in tumor initiation and progression, transgenic mice containing human IGF-IR under a doxycycline-inducible MMTV promoter system were generated. Administration of 2 mg/ml doxycycline in the animals' water supply beginning at 21 days of age resulted in elevated levels of IGF-IR in mammary epithelial cells as detected by Western blotting and immunohistochemistry. Whole mount analysis of 55-day-old mouse mammary glands revealed that IGF-IR overexpression significantly impaired ductal elongation. Moreover, histological analyses revealed multiple hyperplasic lesions in the mammary glands of these 55-day-old mice. The formation of palpable mammary tumors was evident at approximately 2 months of age and was associated with increased levels of IGF-IR signaling molecules including phosphorylated Akt, Erk1/Erk2 and STAT3. Therefore, these transgenic mice provide evidence that IGF-IR overexpression is sufficient to induce mammary epithelial hyperplasia and tumor formation in vivo and provide a model to further understand the function of IGF-IR in mammary epithelial transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abd El-Rehim DM, Pinder SE, Paish CE, Bell J, Blamey RW, Robertson JF et al. (2004). Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol 203: 661–671.

    Article  Google Scholar 

  • Adams TE, McKern NM, Ward CW . (2004). Signalling by the type 1 insulin-like growth factor receptor: interplay with the epidermal growth factor receptor. Growth Factors 22: 89–95.

    Article  CAS  Google Scholar 

  • Althuis MD, Fergenbaum JH, Garcia-Closas M, Brinton LA, Madigan MP, Sherman ME . (2004). Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol Biomarkers Prev 13: 1558–1568.

    CAS  PubMed  Google Scholar 

  • Baserga R . (1999). The IGF-I receptor in cancer research. Exp Cell Res 253: 1–6.

    Article  CAS  Google Scholar 

  • Bates P, Fisher R, Ward A, Richardson L, Hill DJ, Graham CF . (1995). Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Br J Cancer 72: 1189–1193.

    Article  CAS  Google Scholar 

  • Berclaz G, Altermatt HJ, Rohrbach V, Siragusa A, Dreher E, Smith PD . (2001). EGFR dependent expression of STAT3 (but not STAT1) in breast cancer. Int J Oncol 19: 1155–1160.

    CAS  PubMed  Google Scholar 

  • Bonnette SG, Hadsell DL . (2001). Targeted disruption of the IGF-I receptor gene decreases cellular proliferation in mammary terminal end buds. Endocrinology 142: 4937–4945.

    Article  CAS  Google Scholar 

  • Butler AA, Blakesley VA, Poulaki V, Tsokos M, Wood TL, LeRoith D . (1998). Stimulation of tumor growth by recombinant human insulin-like growth factor-I (IGF-I) is dependent on the dose and the level of IGF-I receptor expression. Cancer Res 58: 3021–3027.

    CAS  PubMed  Google Scholar 

  • Carboni JM, Lee AV, Hadsell DL, Rowley BR, Lee FY, Bol DK et al. (2005). Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res 65: 3781–3787.

    Article  CAS  Google Scholar 

  • Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 282: 1318–1321.

    Article  CAS  Google Scholar 

  • Cowin P, Rowlands TM, Hatsell SJ . (2005). Cadherins and catenins in breast cancer. Curr Opin Cell Biol 17: 499–508.

    Article  CAS  Google Scholar 

  • Diaz N, Minton S, Cox C, Bowman T, Gritsko T, Garcia R . (2006). Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res 12: 20–28.

    Article  CAS  Google Scholar 

  • Early Breast Cancer Trialists' Collaborative Group (1998). Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 351: 1451–1467.

  • Ellis MJ, Singer C, Hornby A, Rasmussen A, Cullen KJ . (1994). Insulin-like growth factor mediated stromal-epithelial interactions in human breast cancer. Breast Cancer Res Treat 31: 249–261.

    Article  CAS  Google Scholar 

  • Giani C, Cullen KJ, Campani D, Rasmussen A . (1996). IGF-II mRNA and protein are expressed in the stroma of invasive breast cancers: an in situ hybridization and immunohistochemistry study. Breast Cancer Res Treat 41: 43–50.

    Article  CAS  Google Scholar 

  • Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, Huang M . (2006). Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 12: 11–19.

    Article  CAS  Google Scholar 

  • Gunther EJ, Belka GK, Wertheim GB, Wang J, Hartman JL, Boxer RB et al. (2002). A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J 16: 283–292.

    Article  CAS  Google Scholar 

  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ . (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89: 10578–10582.

    Article  CAS  Google Scholar 

  • Hadsell DL, Murphy KL, Bonnette SG, Reece N, Laucirica R, Rosen JM . (2000). Cooperative interaction between mutant p53 and des(1–3)IGF-I accelerates mammary tumorigenesis. Oncogene 19: 889–898.

    Article  CAS  Google Scholar 

  • Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B et al. (1998). Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351: 1393–1396.

    Article  CAS  Google Scholar 

  • Helle SI, Lonning PE . (1996). Insulin-like growth factors in breast cancer. Acta Oncol 35: 19–22.

    Article  Google Scholar 

  • Kumar R, Hung MC . (2005). Signaling intricacies take center stage in cancer cells. Cancer Res 65: 2511–2515.

    Article  CAS  Google Scholar 

  • Lapidus RG, Nass SJ, Davidson NE . (1998). The loss of estrogen and progesterone receptor gene expression in human breast cancer. J Mammary Gland Biol Neoplasia 3: 85–94.

    Article  CAS  Google Scholar 

  • Li L, Shaw PE . (2002). Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. J Biol Chem 277: 17397–17405.

    Article  CAS  Google Scholar 

  • Linnerth NM, Sirbovan K, Moorehead RA . (2005). Use of a transgenic mouse model to identify markers of human lung tumors. Int J Cancer 114: 977–982.

    Article  CAS  Google Scholar 

  • Marte BM, Downward J . (1997). PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 22: 355–358.

    Article  CAS  Google Scholar 

  • Moorehead RA, Fata JE, Johnson MB, Khokha R . (2001). Inhibition of mammary epithelial apoptosis and sustained phosphorylation of Akt/PKB in MMTV-IGF-II transgenic mice. Cell Death Differ 8: 16–29.

    Article  CAS  Google Scholar 

  • Muise-Helmericks RC, Grimes HL, Bellacosa A, Malstrom SE, Tsichlis PN, Rosen N . (1998). Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 273: 29864–29872.

    Article  CAS  Google Scholar 

  • Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P . (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54: 105–115.

    Article  CAS  Google Scholar 

  • Papa V, Gliozzo B, Clark GM, McGuire WL, Moore D, Fujita-Yamaguchi Y et al. (1993). Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res 53: 3736–3740.

    CAS  PubMed  Google Scholar 

  • Pravtcheva DD, Wise TL . (1998). Metastasizing mammary carcinomas in H19 enhancers-Igf2 transgenic mice. J Exp Zool 281: 43–57.

    Article  CAS  Google Scholar 

  • Resnik JL, Reichart DB, Huey K, Webster NJ, Seely BL . (1998). Elevated insulin-like growth factor I receptor autophosphorylation and kinase activity in human breast cancer. Cancer Res 58: 1159–1164.

    CAS  Google Scholar 

  • Richards RG, Klotz DM, Walker MP, Diagustine RP . (2004). Mammary gland branching morphogenesis is diminished in mice with a deficiency of insulin-like growth factor-I (IGF-I), but not in mice with a liver-specific deletion of IGF-I. Endocrinology 145: 3106–3110.

    Article  CAS  Google Scholar 

  • Richards RG, Walker MP, Sebastian J, DiAugustine RP . (1998). Insulin-like growth factor-1 (IGF-1) receptor-insulin receptor substrate complexes in the uterus. Altered signaling response to estradiol in the IGF-1(m/m) mouse. J Biol Chem 273: 11962–11969.

    Article  CAS  Google Scholar 

  • Rosner A, Miyoshi K, Landesman-Bollag E, Xu X, Seldin DC, Moser AR et al. (2002). Pathway pathology: histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. Am J Pathol 161: 1087–1097.

    Article  CAS  Google Scholar 

  • Ruan W, Kleinberg DL . (1999). Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140: 5075–5081.

    Article  CAS  Google Scholar 

  • Rubini M, Hongo A, D'Ambrosio C, Baserga R . (1997). The IGF-I receptor in mitogenesis and transformation of mouse embryo cells: role of receptor number. Exp Cell Res 230: 284–292.

    Article  CAS  Google Scholar 

  • Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH et al. (2002). The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol 80: 239–256.

    Article  CAS  Google Scholar 

  • Surmacz E . (2000). Function of the IGF-I receptor in breast cancer. J Mammary Gland Biol Neoplasia 5: 95–105.

    Article  CAS  Google Scholar 

  • Surmacz E, Guvakova MA, Nolan MK, Nicosia RF, Sciacca L . (1998). Type I insulin-like growth factor receptor function in breast cancer. Breast Cancer Res Treat 47: 255–267.

    Article  CAS  Google Scholar 

  • Takahashi T, Fukuda K, Pan J, Kodama H, Sano M, Makino S et al. (1999). Characterization of insulin-like growth factor-1-induced activation of the JAK/STAT pathway in rat cardiomyocytes. Circ Res 85: 884–891.

    Article  CAS  Google Scholar 

  • Turner BC, Haffty BG, Narayanan L, Yuan J, Havre PA, Gumbs AA et al. (1997). Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res 57: 3079–3083.

    CAS  PubMed  Google Scholar 

  • Werner H, Le Roith D . (2000). New concepts in regulation and function of the insulin-like growth factors: implications for understanding normal growth and neoplasia. Cell Mol Life Sci 57: 932–942.

    Article  CAS  Google Scholar 

  • Wetterau LA, Moore MG, Lee KW, Shim ML, Cohen P . (1999). Novel aspects of the insulin-like growth factor binding proteins. Mol Genet Metab 68: 161–181.

    Article  CAS  Google Scholar 

  • Yu H, Jove R . (2004). The STATs of cancer – new molecular targets come of age. Nat Rev Cancer 4: 97–105.

    Article  CAS  Google Scholar 

  • Zhang W, Zong CS, Hermanto U, Lopez-Bergami P, Ronai Z, Wang LH . (2006). RACK1 recruits STAT3 specifically to insulin and insulin-like growth factor 1 receptors for activation, which is important for regulating anchorage-independent growth. Mol Cell Biol 26: 413–424.

    Article  CAS  Google Scholar 

  • Zong CS, Chan J, Levy DE, Horvath C, Sadowski HB, Wang LH . (2000). Mechanism of STAT3 activation by insulin-like growth factor I receptor. J Biol Chem 275: 15099–15105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical assistance of Nicolle Linnerth, Katrina Watson, Michelle Ross and Helen Coates and the preliminary pathology reports on some of the initial tumors by Dr Robert Cardiff. This work was supported by an Idea Award from the CBCRA and a CBCRA/CIHR operating grant awarded to RAM and grants from the NCI US Army BCRP to LAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Moorehead.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R., Campbell, C., Gunther, E. et al. Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene 26, 1636–1644 (2007). https://doi.org/10.1038/sj.onc.1209955

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209955

Keywords

This article is cited by

Search

Quick links