Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Identification of novel VHL targets that are associated with the development of renal cell carcinoma

Abstract

von Hippel–Lindau (VHL) disease is a dominantly inherited family cancer syndrome characterized by the development of retinal and central nervous system haemangioblastomas, renal cell carcinoma (RCC) and phaeochromocytoma. Specific germline VHL mutations may predispose to haemangioblastomas, RCC and phaeochromocytoma to a varying extent. Although dysregulation of the hypoxia-inducible transcription factor-2 and JunB have been linked to the development of RCC and phaeochromocytoma, respectively, the precise basis for genotype–phenotype correlations in VHL disease have not been defined. To gain insights into the pathogenesis of RCC in VHL disease we compared gene expression microarray profiles in a RCC cell line expressing a Type 1 or Type 2B mutant pVHL (RCC-associated) to those of a Type 2A or 2C mutant (not associated with RCC). We identified 19 differentially expressed novel VHL target genes linked to RCC development. Eight targets were studied in detail by quantitative real-time polymerase chain reaction (three downregulated and five upregulated by wild-type VHL) and for six genes the effect of VHL inactivation was mimicked by hypoxia (but hypoxic-induction of smooth muscle alpha-actin 2 was specific for a RCC cell line). The potential role of four RCC-associated VHL target genes was assessed in vitro. NB thymosin beta (TMSNB) and proteinase-activated receptor 2 (PAR2) (both downregulated by wt pVHL) increased cell growth and motility in a RCC cell line, but aldehyde dehydrogenase (ALDH)1 and ALDH7 had no effect. These findings implicate TMSNB and PAR2 candidate oncogenes in the pathogenesis of VHL-associated RCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Baba M, Hirai S, Yamada-Okabe H, Hamada K, Tabuchi H, Kobayashi K et al. (2003). Loss of von Hippel–Lindau protein causes cell density dependent deregulation of cyclin D1 expression through hypoxia-inducible factor. Oncogene 22: 2728–2738.

    Article  CAS  Google Scholar 

  • Bertog M, Letz B, Kong W, Steinhoff M, Higgins MA, Bielfeld-Ackermann A et al. (1999). Basolateral proteinase-activated receptor (PAR-2) induces chloride secretion in M-1 mouse renal cortical collecting duct cells. J Physiol 521 (Part 1): 3–17.

    Article  CAS  Google Scholar 

  • Bindra RS, Vasselli JR, Stearman R, Linehan WM, Klausner RD . (2002). VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells. Cancer Res 62: 3014–3019.

    CAS  PubMed  Google Scholar 

  • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M . (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394: 485–490.

    Article  CAS  Google Scholar 

  • Cha HJ, Jeong MJ, Kleinman HK . (2003). Role of thymosin beta4 in tumor metastasis and angiogenesis. J Natl Cancer Inst 1995: 1674–1680.

    Article  Google Scholar 

  • Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH et al. (2001). Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel–Lindau disease. Hum Mol Genet 10: 1029–1038.

    Article  CAS  Google Scholar 

  • Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC et al. (2000). Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel–Lindau tumor suppressor protein. J Biol Chem 275: 25733–25741.

    Article  CAS  Google Scholar 

  • Cocks TM, Sozzi V, Moffatt JD, Selemidis S . (1999). Protease-activated receptors mediate apamin-sensitive relaxation of mouse and guinea pig gastrointestinal smooth muscle. Gastroenterology 116: 586–592.

    Article  CAS  Google Scholar 

  • Crossey PA, Richards FM, Foster K, Green JS, Prowse A, Latif F, et al. (1994). Identification of intragenic mutations in the von Hippel–Lindau disease tumour suppressor gene and correlation with disease phenotype. Hum Mol Genet 3: 1303–1308.

    Article  CAS  Google Scholar 

  • Danahay H, Withey L, Poll CT, van de Graaf SF, Bridges RJ . (2001). Protease-activated receptor-2-mediated inhibition of ion transport in human bronchial epithelial cells. Am J Physiol Cell Physiol 280: C1455–C1464.

    Article  CAS  Google Scholar 

  • Dery O, Corvera CU, Steinhoff M, Bunnett NW . (1998). Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274: C1429–C1452.

    Article  CAS  Google Scholar 

  • Fiorucci S, Mencarelli A, Palazzetti B, Distrutti E, Vergnolle N, Hollenberg MD et al. (2001). Proteinase-activated receptor 2 is an anti-inflammatory signal for colonic lamina propria lymphocytes in a mouse model of colitis. Proc Natl Acad Sci USA 98: 13936–13941.

    Article  CAS  Google Scholar 

  • Frohm M, Gunne H, Bergman AC, Agerberth B, Bergman T, Boman A et al. (1996). Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem 237: 86–92.

    Article  CAS  Google Scholar 

  • Frungieri MB, Weidinger S, Meineke V, Kohn FM, Mayerhofer A . (2002). Proliferative action of mast-cell tryptase is mediated by PAR2, COX2, prostaglandins, and PPARgamma: Possible relevance to human fibrotic disorders. Proc Natl Acad Sci USA 99: 15072–15077.

    Article  CAS  Google Scholar 

  • Grant DS, Kinsella JL, Kibbey MC, LaFlamme S, Burbelo PD, Goldstein Al et al. (1995). Matrigel induces thymosin beta 4 gene in differentiating endothelial cells. J Cell Sci 108 (Part 12): 3685–3694.

    CAS  PubMed  Google Scholar 

  • Hall AK . (1991). Differential expression of thymosin genes in human tumors and in the developing human kidney. Int J Cancer 48: 672–677.

    Article  CAS  Google Scholar 

  • Hall AK . (1994). Molecular interactions between G-actin, DNase I and the beta-thymosins in apoptosis: a hypothesis. Med Hypotheses 43: 125–131.

    Article  CAS  Google Scholar 

  • Hoffman MA, Ohh M, Yang H, Klco JM, Ivan M, Kaelin Jr WG . (2001). von Hippel–Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum Mol Genet 10: 1019–1027.

    Article  CAS  Google Scholar 

  • Hollenberg MD . (2002). PARs in the stars: proteinase-activated receptors and astrocyte function. Focus on ‘thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways’. Am J Physiol Cell Physiol 283: C1347–C1350.

    Article  CAS  Google Scholar 

  • Hoogerwerf WA, Zou L, Shenoy M, Sun D, Micci MA, Lee-Hellmich H et al. (2001). The proteinase-activated receptor 2 is involved in nociception. J Neurosci 21: 9036–9042.

    Article  CAS  Google Scholar 

  • Huff T, Muller CS, Otto AM, Netzker R, Hannappel E . (2001). beta-Thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol 33: 205–220.

    Article  CAS  Google Scholar 

  • Iguchi K, Usami Y, Hirano K, Hamatake M, Shibata M, Ishida R . (1999). Decreased thymosin beta4 in apoptosis induced by a variety of antitumor drugs. Biochem Pharmacol 57: 1105–1111.

    Article  CAS  Google Scholar 

  • Jiang Y, Zhang W, Kondo K, Klco JM, St Martin TB, Dufault MR et al. (2003). Gene expression profiling in a renal cell carcinoma cell line: dissecting VHL and hypoxia-dependent pathways. Mol Cancer Res 1: 453–462.

    CAS  PubMed  Google Scholar 

  • Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW . (2000). Activation of HIF1alpha ubiquitination by a reconstituted von Hippel–Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA 97: 10430–10435.

    Article  CAS  Google Scholar 

  • Knauth K, Bex C, Jemth P, Buchberger A . (2006). Renal cell carcinoma risk in type 2 von Hippel–Lindau disease correlates with defects in pVHL stability and HIF-1alpha interactions. Oncogene 25: 370–377.

    Article  CAS  Google Scholar 

  • Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin Jr WG . (2002). Inhibition of HIF is necessary for tumor suppression by the von Hippel–Lindau protein. Cancer Cell 1: 237–246.

    Article  CAS  Google Scholar 

  • Kondo K, Kim WY, Lechpammer M, Kaelin Jr WG . (2003). Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PloS Biol 1: E83.

    Article  Google Scholar 

  • Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP et al. (2005). Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8: 155–167.

    Article  Google Scholar 

  • Li D, Das S, Yamada T, Samuels HH . (2004). The NRIF3 family of transcriptional coregulators induces rapid and profound apoptosis in breast cancer cells. Mol Cell Biol 24: 3838–3848.

    Article  CAS  Google Scholar 

  • Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM et al. (2003). von Hippel–Lindau disease. Lancet 361: 2059–2067.

    Article  CAS  Google Scholar 

  • Maher ER, Iselius L, Yates JR, Littler M, Benjamin C, Harris R et al. (1991). Von Hippel–Lindau disease: a genetic study. J Med Genet 28: 443–447.

    Article  CAS  Google Scholar 

  • Maher ER . (2004). Von Hippel–Lindau disease. Curr Mol Med 4: 833–842.

    Article  CAS  Google Scholar 

  • Maina EN, Morris MR, Zatyka M, Raval RR, Banks RE, Richards FM et al. (2005). Identification of novel VHL target genes and relationship to hypoxic response pathways. Oncogene 24: 4549–4558.

    Article  CAS  Google Scholar 

  • Malinda KM, Goldstein AL, Kleinman HK et al. (1997). Thymosin beta 4 stimulates directional migration of human umbilical vein endothelial cells. FASEB J 11: 474–481.

    Article  CAS  Google Scholar 

  • Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD . (2002). The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1: 247–255.

    Article  CAS  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275, 1999.

    Article  CAS  Google Scholar 

  • Maxwell PH, Ratcliffe PJ . (2002). Oxygen sensors and angiogenesis. Semin Cell Dev Biol 13: 29–37.

    Article  CAS  Google Scholar 

  • Maxwell PH . (2005). The HIF pathway in cancer. Semin Cell Dev Biol 16: 523–530.

    Article  CAS  Google Scholar 

  • Milia AF, Salis MB, Stacca T, Pinna A, Madeddu P, Trevisani M . (2002). Protease-activated receptor-2 stimulates angiogenesis and accelerates hemodynamic recovery in a mouse model of hindlimb ischemia. Circ Res 91: 346–352.

    Article  CAS  Google Scholar 

  • Morris MR, Gentle D, Abdulrahman M, Maina EN, Gupta K, Banks RE . (2005). Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res 165: 4598–4606.

    Article  Google Scholar 

  • Neumann HPH, Eng C, Mulligan L, Glavac D, Ponder BAJ, Crossey PA et al. (1995). Consequences of direct genetic testing for germline mutations in the clinical management of families with multiple endocrine neoplasia, type II. JAMA 274: 1149–1151.

    Article  CAS  Google Scholar 

  • Nguyen TD, Moody MW, Steinhoff M, Okolo C, Koh DS, Bunnett NW . (1999). Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2. J Clin Invest 103: 261–269.

    Article  CAS  Google Scholar 

  • Niu M, Nachmias VT . (2000). Increased resistance to apoptosis in cells overexpressing thymosin beta four: a role for focal adhesion kinase pp125FAK. Cell Adhes Commun 7: 311–320.

    Article  CAS  Google Scholar 

  • Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE et al. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol 2: 423–427.

    Article  CAS  Google Scholar 

  • Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al. (2005). Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25: 5675–5686.

    Article  CAS  Google Scholar 

  • Richard DE, Vouret-Craviari V, Pouyssegur J . (2001). Angiogenesis and G-protein-coupled receptors: signals that bridge the gap. Oncogene 20: 1556–1562.

    Article  CAS  Google Scholar 

  • Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W . (2003). Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 425: 307–311.

    Article  CAS  Google Scholar 

  • Vergnolle N, Wallace JL, Bunnett NW, Hollenberg MD . (2001). Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol Sci 22: 146–152.

    Article  CAS  Google Scholar 

  • Wang V, Davis DA, Haque M, Huang LE, Yarchoan R . (2005). Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293 T cells. Cancer Res 65: 3299–3306.

    Article  CAS  Google Scholar 

  • Webster AR, Richards FM, MacRonald FE, Moore AT, Maher ER . (1998). An analysis of phenotypic variation in the familial cancer syndrome von Hippel–Lindau disease: evidence for modifier effects. Am J Hum Genet 63: 1025–1035.

    Article  CAS  Google Scholar 

  • Wiesener MS, Munchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A et al. (2001). Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res 61: 5215–5222.

    CAS  PubMed  Google Scholar 

  • Woodward ER, Eng C, McMahon R, Voutilainen R, Affara NA, Ponder BAJ et al. (1997). Genetic predisposition to phaeochromocytoma: analysis of candidate genes GDNF, RET and VHL. Hum Mol Genet 6: 1051–1056.

    Article  CAS  Google Scholar 

  • Wykoff CC, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ . (2000). Identification of novel hypoxia dependent and independent target genes of the von Hippel–Lindau (VHL) tumour suppressor by mRNA differential expression profiling. Oncogene 19: 6297–6305.

    Article  CAS  Google Scholar 

  • Wykoff CC, Sotiriou C, Cockman ME, Ratcliffe PJ, Maxwell P, Liu E et al. (2004). Gene array of VHL mutation and hypoxia shows novel hypoxia-induced genes and that cyclin D1 is a VHL target gene. Br J Cancer 90: 1235–1243.

    Article  CAS  Google Scholar 

  • Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL . (2003). A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349: 427–434.

    Article  CAS  Google Scholar 

  • Zatyka M, da Silva NF, Clifford SC, Morris MR, Wiesener MS, Eckardt KU et al. (2002). Identification of cyclin D1 and other novel targets for the von Hippel–Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel–Lindau disease. Cancer Res 62: 3803–3811.

    CAS  PubMed  Google Scholar 

  • Zbar B, Kishida T, Chen F, Schmidt L, Maher ER, Richards FM et al. (1996). Germline mutations in the Von Hippel–Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat 8: 348–357.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E R Maher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulrahman, M., Maina, E., Morris, M. et al. Identification of novel VHL targets that are associated with the development of renal cell carcinoma. Oncogene 26, 1661–1672 (2007). https://doi.org/10.1038/sj.onc.1209932

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209932

Keywords

This article is cited by

Search

Quick links