Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Principles of micro-RNA production and maturation

Abstract

Micro-RNAs (miRNAs) are a class of approximately 22-nucleotide non-coding RNAs expressed in multicellular organisms. They are first transcribed in a similar manner to pre-mRNAs. The transcripts then go through a series of processing steps, including endonucleolytic cleavage, nuclear export and a strand selection procedure, to yield the single-stranded mature miRNA products. The transcription and processing of miRNAs determines the abundance and the sequence of mature miRNAs and has important implications for the function of miRNAs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  • Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X et al. (2003a). A uniform system for microRNA annotation. RNA 9: 277–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D . (2003b). MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13: 807–818.

    CAS  PubMed  Google Scholar 

  • Andersson MG, Haasnoot PC, Xu N, Berenjian S, Berkhout B, Akusjarvi G . (2005). Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 79: 9556–9565.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aukerman MJ, Sakai H . (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15: 2730–2741.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    CAS  PubMed  Google Scholar 

  • Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37: 766–770.

    CAS  PubMed  Google Scholar 

  • Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E . (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21–24.

    CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ . (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363–366.

    CAS  PubMed  Google Scholar 

  • Billy E, Brondani V, Zhang H, Muller U, Filipowicz W . (2001). Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc Natl Acad Sci USA 98: 14428–14433.

    CAS  PubMed  Google Scholar 

  • Blow MJ, Grocock RJ, van Dongen S, Enright AJ, Dicks E, Futreal PA et al. (2006). RNA editing of human microRNAs. Genome Biol 7: R27.

    PubMed  PubMed Central  Google Scholar 

  • Bohnsack MT, Czaplinski K, Gorlich D . (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10: 185–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bracht J, Hunter S, Enchus R, Weeks P, Pasquinelli AE . (2004). Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA 10: 1586–1594.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM . (2005). Principles of microRNA-target recognition. PLoS Biol 3: e85.

    PubMed  PubMed Central  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR . (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10: 1957–1966.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caudy AA, Myers M, Hannon GJ, Hammond SM . (2002). Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16: 2491–2496.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K et al. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436: 740–744.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conaco C, Otto S, Han JJ, Mandel G . (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103: 2422–2427.

    CAS  PubMed  Google Scholar 

  • Cullen BR . (2004). Transcription and processing of human microRNA precursors. Mol Cell 16: 861–865.

    CAS  PubMed  Google Scholar 

  • Denli AM, Tops B, Plasterk RHA, Ketting RF, Hannon GJ . (2004). Processing of pri-microRNAs by the microprocessor complex. Nature 432: 231–235.

    CAS  PubMed  Google Scholar 

  • Doench JG, Sharp PA . (2004). Specificity of microRNA target selection in translational repression. Genes Dev 18: 504–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doi N, Zenno S, Ueda R, Ohki-Hamazaki H, Ui-Tei K, Saigo K . (2003). Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol 13: 41–46.

    CAS  PubMed  Google Scholar 

  • Du T, Zamore PD . (2005). microPrimer: the biogenesis and function of microRNA. Development 132: 4645–4652.

    CAS  PubMed  Google Scholar 

  • Eliceiri GL . (1999). Small nucleolar RNAs. Cell Mol Life Sci 56: 22–31.

    CAS  PubMed  Google Scholar 

  • Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C et al. (2005). A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123: 819–831.

    CAS  PubMed  Google Scholar 

  • Feinbaum R, Ambros V . (1999). The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev Biol 210: 87–95.

    CAS  PubMed  Google Scholar 

  • Forstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP et al. (2005). Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3: e236.

    PubMed  PubMed Central  Google Scholar 

  • Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R . (2005). Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123: 631–640.

    CAS  PubMed  Google Scholar 

  • Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al. (2004). The microprocessor complex mediates the genesis of microRNAs. Nature 432: 235–240.

    CAS  PubMed  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I et al. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106: 23–34.

    CAS  PubMed  Google Scholar 

  • Gwizdek C, Ossareh-Nazari B, Brownawell AM, Doglio A, Bertrand E, Macara IG et al. (2003). Exportin-5 mediates nuclear export of minihelix-containing RNAs. J Biol Chem 278: 5505–5508.

    CAS  PubMed  Google Scholar 

  • Haase AD, Jaskiewicz L, Zhang H, Laine S, Sack R, Gatignol A et al. (2005). TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 6: 961–967.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ . (2001). Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293: 1146–1150.

    CAS  PubMed  Google Scholar 

  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN . (2004). The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev 18: 3016–3027.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK et al. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125: 887–901.

    CAS  PubMed  Google Scholar 

  • Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y et al. (2005). Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol 57: 173–188.

    CAS  PubMed  Google Scholar 

  • Houbaviy HB, Dennis L, Jaenisch R, Sharp PA . (2005). Characterization of a highly variable eutherian microRNA gene. RNA 11: 1245–1257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutvágner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD . (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293: 834–838.

    PubMed  Google Scholar 

  • Hutvágner G, Zamore PD . (2002). A microRNA in a multiple–turnover RNAi enzyme complex. Science 297: 2056–2060.

    PubMed  Google Scholar 

  • Ishizuka A, Siomi MC, Siomi H . (2002). A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16: 2497–2508.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Ye X, Liu X, Fincher L, McKearin D, Liu Q . (2005). Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev 19: 1674–1679.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SM, Lin S-Y, Slack FJ . (2003). The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev Biol 259: 364–379.

    CAS  PubMed  Google Scholar 

  • Johnston Jr RJ, Hobert O . (2003). A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426: 845–849.

    CAS  PubMed  Google Scholar 

  • Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RHA . (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15: 2654–2659.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD . (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115: 209–216.

    CAS  PubMed  Google Scholar 

  • Kim VN . (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6: 376–385.

    CAS  PubMed  Google Scholar 

  • Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. (2005). Combinatorial microRNA target predictions. Nat Genet 37: 495–500.

    CAS  PubMed  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y . (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12: 206–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurihara Y, Watanabe Y . (2004). Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101: 12753–12758.

    CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . (2001). Identification of novel genes coding for small expressed RNAs. Science 294: 853–858.

    CAS  PubMed  Google Scholar 

  • Lai EC, Tam B, Rubin GM . (2005). Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19: 1067–1080.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landthaler M, Yalcin A, Tuschl T . (2004). The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14: 2162–2167.

    CAS  PubMed  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP . (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858–862.

    CAS  PubMed  Google Scholar 

  • Lee RC, Ambros V . (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862–864.

    CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V . (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.

    CAS  PubMed  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. (2003). The nuclear RNaseIII Drosha initiates microRNA processing. Nature 425: 415–419.

    CAS  PubMed  Google Scholar 

  • Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN . (2006). The role of PACT in the RNA silencing pathway. EMBO J 25: 522–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN . (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21: 4663–4670.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23: 4051–4060.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    CAS  PubMed  Google Scholar 

  • Li J, Yang Z, Yu B, Liu J, Chen X . (2005). Methylation protects miRNAs and siRNAs from a 3′ end uridylation activity in Arabidopsis. Curr Biol 15: 1501–1507.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW et al. (2003). The microRNAs of Caenorhabditis elegans. Genes Dev 17: 991–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lingel A, Simon B, Izaurralde E, Sattler M . (2003). Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426: 465–469.

    CAS  PubMed  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ et al. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305: 1437–1441.

    CAS  PubMed  Google Scholar 

  • Luciano DJ, Mirsky H, Vendetti NJ, Maas S . (2004). RNA editing of a miRNA precursor. RNA 10: 1174–1177.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U . (2004). Nuclear export of microRNA precursors. Science 303: 95–98.

    CAS  PubMed  Google Scholar 

  • Ma JB, Ye K, Patel DJ . (2004). Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429: 318–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ et al. (2006). Structural basis for double-stranded RNA processing by Dicer. Science 311: 195–198.

    CAS  PubMed  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK et al. (2004). MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23: 3356–3364.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maniataki E, Mourelatos Z . (2005). A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 19: 2979–2990.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T . (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15: 185–197.

    CAS  PubMed  Google Scholar 

  • Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L et al. (2002). miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16: 720–728.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    CAS  PubMed  Google Scholar 

  • Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A et al. (2003). Evidence for nuclear processing of plant microRNA and short interfering RNA precursors. Plant Physiol 132: 1382–1390.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS . (2005). Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102: 3691–3696.

    CAS  PubMed  Google Scholar 

  • Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA et al. (2005). Identification of microRNAs of the herpesvirus family. Nat Methods 2: 269–276.

    CAS  PubMed  Google Scholar 

  • Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Radmark O . (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 21: 5864–5874.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906.

    CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP . (2002). MicroRNAs in plants. Genes Dev 16: 1616–1626.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A . (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res 14: 1902–1910.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K, Ishizuka A, Siomi H, Siomi MC . (2005). Processing of pre-microRNAs by the Dicer-1–Loquacious complex in Drosophila cells. PLoS Biol 3: e235.

    PubMed  PubMed Central  Google Scholar 

  • Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD . (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115: 199–208.

    CAS  PubMed  Google Scholar 

  • Shen B, Goodman HM . (2004). Uridine addition after microRNA-directed cleavage. Science 306: 997.

    CAS  PubMed  Google Scholar 

  • Sokol NS, Ambros V . (2005). Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 19: 2343–2354.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA et al. (2003). The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10: 1026–1032.

    CAS  PubMed  Google Scholar 

  • Tahbaz N, Kolb FA, Zhang H, Jaronczyk K, Filipowicz W, Hobman TC . (2004). Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep 5: 189–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tam W . (2001). Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene 274: 157–167.

    CAS  PubMed  Google Scholar 

  • Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD . (2004). A protein sensor for siRNA asymmetry. Science 306: 1377–1380.

    CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G . (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855–862.

    CAS  PubMed  Google Scholar 

  • Yan KS, Yan S, Farooq A, Han A, Zeng L, Zhou MM . (2003). Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426: 465–469.

    Google Scholar 

  • Yi R, Qin Y, Macara IG, Cullen BR . (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17: 3011–3016.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW et al. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science 307: 932–935.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Cullen BR . (2003). Sequence requirements for microRNA processing and function in human cells. RNA 9: 112–123.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Cullen BR . (2005). Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 280: 27595–27603.

    CAS  PubMed  Google Scholar 

  • Zeng Y, Yi R, Cullen BR . (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24: 138–148.

    CAS  PubMed  Google Scholar 

  • Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W . (2002). Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21: 5875–5885.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W . (2004). Single processing center models for human Dicer and bacterial RNaseIII. Cell 118: 57–68.

    CAS  PubMed  Google Scholar 

  • Zhao Y, Samal E, Srivastava D . (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436: 214–220.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank B Cullen for comments and E Wessel for help in preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Zeng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zeng, Y. Principles of micro-RNA production and maturation. Oncogene 25, 6156–6162 (2006). https://doi.org/10.1038/sj.onc.1209908

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209908

Keywords

  • micro-RNA
  • micro-RNA processing
  • Drosha
  • precursor miRNAs

Further reading

Search

Quick links