Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase

Abstract

Target of Rapamycin (TOR), a giant protein kinase expressed by all eucaryotic cells, controls cell size in response to nutrient signals. In metazoans, cell and organismal growth is controlled by nutrients and the insulin/insulin-like growth factor (IGF) system, and the understanding of how these inputs coordinately regulate TOR signaling has advanced greatly in the past 5 years. In single-cell eucaryotes and Caenorhabditis elegans, TOR is a dominant regulator of overall mRNA translation, whereas in higher metazoans, TOR controls the expression of a smaller fraction of mRNAs that is especially important to cell growth. TOR signals through two physically distinct multiprotein complexes, and the control of cell growth is mediated primarily by TOR complex 1 (TORC1), which contains the polypeptides raptor and LST8. Raptor is the substrate binding element of TORC1, and the ability of raptor to properly present substrates, such as the translational regulators 4E-BP and p70 S6 kinase, to the TOR catalytic domain is essential for their TOR-catalysed phosphorylation, and is inhibited by the Rapamycin/FKBP-12 complex. The dominant proximal regulator of TORC1 signaling and kinase activity is the ras-like small GTPase Rheb. Rheb binds directly to the mTOR catalytic domain, and Rheb-GTP enables TORC1 to attain an active configuration. Insulin/IGF enhances Rheb GTP charging through the ability of activated Akt to inhibit the Rheb-GTPase-activating function of the tuberous sclerosis heterodimer (TSC1/TSC2). Conversely, energy depletion reduces Rheb-GTP charging through the ability of the adenosine monophosphate-activated protein kinase to phosphorylate TSC2 and stimulate its Rheb-GTPase activating function, as well as by HIFα-mediated transcriptional responses that act upstream of the TSC1/2 complex. Amino-acid depletion inhibits TORC1 acting predominantly downstream of the TSC complex, by interfering with the ability of Rheb to bind to mTOR. The components of the insulin/IGF pathway to TORC1 are now well established, whereas the elements mediating the more ancient and functionally dominant input of amino acids remain largely unknown.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abraham RT . (2004). DNA Repair 3: 883–887.

  • Abraham RT, Wiederrecht GJ . (1996). Ann Rev Immunol 14: 483–510.

  • Alessi DR, Kozlowski MT, Weng QP, Morrice N, Avruch J. . (1998). Curr Biol 8: 69–81.

  • Ali SM, Sabatini DM . (2005). J Biol Chem 280: 19445–19448.

  • Arsham AM, Howell JJ, Simon MC . (2003). J Biol Chem 278: 29655–29660.

  • Aspuria PJ, Tamanoi F . (2004). Cell Signal 16: 1105–1112.

  • Avruch J, Lin Y, Long X, Murthy S, Ortiz-Vega S . (2005). Curr Opin Clin Nutr Metab Care 8: 67–72.

  • Avruch J, Zhang XF, Kyriakis JM . (1994). Trends Biol Sci 19: 279–283.

  • Balendran A, Currie R, Armstrong CG, Avruch J, Alessi DR . (1999). J Biol Chem 274: 37400–37406.

  • Banerjee P, Ahmad MF, Grove JR, Kozlosky C, Price DJ, Avruch J . (1990). Proc Natl. Acad. Sci USA 87: 8550–8554.

  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN . (1996). Mol Biol Cell 7: 25–42.

  • Beugnet A, Wang X, Proud CG . (2003). J Biol Chem 278: 40717–40722.

  • Bierer BE, Jin YJ, Fruman DA, Calvo V, Burakoff SJ . (1991). Transplant Proc 6: 2850–2855.

  • Biondi RM, Kieloch A, Currie RA, Deak M, Alessi DR . (2001). EMBO J 20: 4380–4390.

  • Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. . (2002). J Biol Chem 277: 23977–23980.

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS et al. (1994). Nature 369: 756–758.

  • Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber S . (1995). Nature 377: 441–446.

  • Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E et al. (2004). Genes Dev 18: 2893–2904.

  • Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin Jr WG . (2003). Cancer Cell 2: 147–158.

  • Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ . (1997). Science 277: 99–101.

  • Burgering BM, Coffer PJ . (1995). Nature 376: 599–602.

  • Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM . (1998). Proc Nat Acad Sci USA 95: 1432–1437.

  • Butow RA, Avadhani NG . (2004). Mol Cell 14: 1–15.

  • Byfield MP, Murray JT, Backer JM . (2005). J Biol Chem 280: 33076–33082.

  • Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM et al. (1993). Mol Cell Biol 13: 6012–6023.

  • Castro AF, Rebhun JF, Clark GJ, Quilliam LA . (2003). J Biol Chem 278: 32493–32496.

  • Cheatham L, Monfar M, Chou MM, Blenis J . (1995). Proc Natl Acad Sci USA 92: 11696–11700.

  • Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR . (1994). Mol Cell Biol 14: 4902–4911.

  • Chen RH, Blenis J . (1990). Mol Cell Biol 10: 3204–3215.

  • Chen J, Zheng X-F, Brown EJ, Schreiber SL . (1995). Proc Natl Acad Sci USA 92: 4947–4951.

  • Chiu MI, Katz H, Berlin V. . (1994). Proc Natl Acad Sci USA 91: 12574–12578.

  • Choi J, Chen J, Schreiber SL, Clardy J . (1996). Science 273: 239–242.

  • Choi KM, McMahon LP, Lawrence Jr JC . (2003). J Biol Chem 278: 19667–19673.

  • Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J . (1994). Nature 370: 71–75.

  • Colicelli J . (2004). Sci STKE 250: RE13.

  • Corradetti MN, Inoki K, Guan KL . (2005). J Biol Chem 280: 9769–9772.

  • Dan HC, Sun M, Yang L, Feldman RI, Sui XM, Ou CC et al. (2002). J Biol Chem 277: 35364–35370.

  • Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G . (2001). Science 294: 1102–1105.

  • Dong J, Pan D . (2004). Genes Dev 18: 2479–2484.

  • Drenan RM, Liu X, Bertram PG, Zheng XF . (2004). J Biol Chem 279: 772–778.

  • Dumont FJ, Su G . (1995). Life Sci 58: 373–395.

  • Erikson E, Maller JL . (1985). Proc Natl Acad Sci USA 82: 742–746.

  • Erikson E, Maller JL . (1986). J Biol Chem 261: 350–355.

  • Fang Y, Park IH, Wu AL, Du G, Huang P, Frohman MA et al. (2003). Curr Biol 13: 2037–2044.

  • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J . (2001). Science 294: 1942–1945.

  • Gao X, Pan D . (2001). Genes Dev 15: 1383–1392.

  • Gao X, Zhang Y, Arrazola P, Hino O, Kobayashi T, Yeung RS et al. (2002). Nat Cell Biol 4: 699–704.

  • Garami A, Zwartkruis FJT, Nobukuni T, Joaquin M, Roccio M, Stocker H et al. (2003). Mol Cell 11: 1457–1466.

  • Gautam N, Downs GB, Yan K, Kisselev O . (1998). Cell Signal 10: 447–455.

  • Giannattasio S, Liu Z, Thornton J, Butow RA . (2005). J Biol Chem 280: 42528–43535.

  • Grove JR, Banerjee P, Balasubramanyam A, Coffer PJ, Price DJ, Avruch J et al. (1991). Mol Cell Biol 11: 5541–5550.

  • Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N . (2005). J Biol Chem 280: 32081–32089.

  • Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng Q-P et al. (1997). J Biol Chem 272: 26457–26463.

  • Hara K, Yonezawa K, Weng Q-P, Kozlowski MT, Belham C, Avruch J . (1998). J Biol Chem 272: 14484–14494.

  • Hara K, Maruki Y, Long X, Yoshino K-i, Oshiro N, Hidayat S et al. (2002). Cell 110: 177–189.

  • Heitman J, Movva NR, Hall MN . (1991). Science 253: 905–909.

  • Hu CD, Kariya K, Tamada M, Akasaka K, Shirouzu M, Yokoyama S et al. (1995). J Biol Chem 270: 30274–30277.

  • Im E, von Lintig FC, Chen J, Zhuang S, Qui W, Chowdhury S et al. (2002). Oncogene 21: 6356–6365.

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL . (2002). Nat Cell Biol 4: 648–657.

  • Inoki K, Li Y, Xu T, Guan K-L . (2003a). Genes Dev 17: 1829–1834.

  • Inoki K, Zhu T, Guan KL . (2003b). Cell 115: 577–590.

  • Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K . (1999). J Biol Chem 274: 34493–34498.

  • Jones SW, Erikson E, Blenis J, Maller JL, Erikson RL . (1988). Proc Natl Acad Sci USA 85: 3377–3381.

  • Kam Y, Exton JH . (2004). FASEB J 18: 311–319.

  • Karbowniczek M, Cash T, Cheung M, Robertson GP, Astrinidis A, Henske EP . (2004). J Biol Chem 279: 29930–29937.

  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al. (2002). Cell 110: 163–175.

  • Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H et al. (2003). Mol Cell 11: 895–904.

  • Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K et al. (2003). Genes Cells 8: 65–79.

  • Koltin Y, Faucette L, Bergsma DJ, Levy MA, Cafferkey R, Koser PL et al. (1991). Mol Cell Biol 11: 1718–1723.

  • Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN . (1993). Cell 73: 585–596.

  • Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, el-Hashemite N et al. (2002). Hum Mol Genet 11: 525–534.

  • Kwiatkowski DJ . (2003). Ann Hum Genet 67: 87–96.

  • Li Y, Inoki K, Guan KL . (2004). Mol Cell Biol 24: 7965–7975.

  • Liu Z, Sekito T, Epstein CB, Butow RA . (2001). EMBO J 20: 7209–7219.

  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D et al. (2002). Mol Cell 10: 457–468.

  • Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J . (2005a). Curr Biol 15: 702–713.

  • Long X, Ortiz-Vega S, Lin Y, Avruch J . (2005b). J Biol Chem 280: 23433–23436.

  • Long X, Spycher C, Han ZS, Rose AM, Muller F, Avruch J . (2002). Curr Biol 12: 1448–1461.

  • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP . (2005). Cell 121: 179–193.

  • Manning BD, Tee AR, Logsdon MM, Blenis J, Cantley LC . (2002). Mol Cell 10: 151–162.

  • Mirshahi T, Mittal V, Zhang H, Linder ME, Logothetis DE . (2002). J Biol Chem 277: 36345–36350.

  • Nemenoff RA, Price DJ, Mendelson MJ, Carter EA, Avruch J . (1988). J Biol Chem 263: 19455–19460.

  • Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P et al. (2005). Proc Natl Acad Sci USA 102: 14238–14343.

  • Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K et al. (2003). J Biol Chem 278: 15461–15464.

  • Oldham S, Hafen E . (2003). Trends Cell Biol 13: 79–85.

  • Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S . (2004). Genes Cells 9: 359–366.

  • Patel PH, Thapar N, Guo L, Martinez M, Maris J, Gau CL et al. (2003). J Cell Sci 116: 3601–3610.

  • Pearson RB, Dennis PB, Han JW, Williamson NA, Kozma SC, Wettenhall RE et al. (1995). EMBO J 14: 5279–5287.

  • Potter CJ, Huang H, Xu T . (2001). Cell 105: 357–368.

  • Price D, Grove JR, Calvo V, Avruch J, Bierer BE . (1992). Science 257: 973–977.

  • Price DJ, Gunsalus JR, Avruch J . (1990). Proc Natl Acad Sci USA 87: 7944–7948.

  • Price DJ, Mukhohpadhyay NK, Avruch J . (1991). J Biol Chem 266: 16281–16284.

  • Price DJ, Nemenoff RA, Avruch J . (1989). J Biol Chem 264: 13825–13833.

  • Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA . (1998). Science 279: 707–710.

  • Radimerski T, Montagne J, Hemmings-Mieszczak M, Thomas G . (2002). Genes Dev 16: 2627–2632.

  • Reiling JH, Hafen E . (2004). Genes Dev 18: 2879–2892.

  • Roccio M, Bos JL, Zwartkruis FJ . (2006). Oncogene 25: 657–664.

  • Rodriguez-Viciana P, Marte BM, Warne PH, Downward J . (1996). Philos Trans R Soc London B Biol Sci 351: 225–231.

  • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J . (2004). Proc Natl Acad Sci USA 101: 13489–13494.

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH . (1994). Cell 78: 35–43.

  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G et al. (1995). J Biol Chem 270: 815–822.

  • Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA . (2003). Nat Cell Biol 5: 566–571.

  • Schalm SS, Blenis J . (2002). Curr Biol 8: 632–639.

  • Schalm SS, Fingar DC, Sabatini DM, Blenis J . (2003). Curr Biol 13: 797–806.

  • Schreiber S . (1991). Science 251: 283–287.

  • Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence Jr JC . (1998). Proc Natl Acad Sci USA 95: 7772–7777.

  • Sehgal SN . (2003). Transplant Proc 3 (35 suppl): 75–145.

  • Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM et al. (2000). Cancer Res 60: 3504–3513.

  • Smith EM, Finn SG, Tee AR, Browne GJ, Proud CG . (2005). J Biol Chem 280: 18718–18727.

  • Smith TF, Gaitatzes C, Saxena K, Neer EJ . (1999). Trends Biol Sci 24: 181–185.

  • Sofer A, Lei K, Johannessen CM, Ellisen LW . (2005). Mol Cell Biol 25: 5834–5845.

  • Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat F, Daram P, BG et al. (2003). Nat Cell Biol 5: 559–565.

  • Sturgill TW, Ray LB, Erikson E, Maller JL . (1988). Nature 334: 715–718.

  • Takahashi K, Nakagawa M, Young SG, Yamanaka S . (2005). J Biol Chem 280: 32768–32774.

  • Tapon N, Ito N, Dickson BJ, Treisman JE, Hariharan IK . (2001). Cell 105: 345–355.

  • Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J . (2002). Proc Natl Acad Sci USA 99: 13571–13576.

  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J . (2003). Curr Biol 13: 1259–1268.

  • Urano J, Comiso MJ, Guo L, Aspuria PJ, Deniskin R, Tabancay Jr AP et al. (2005). Mol Microbiol 58: 1074–1086.

  • van Slegtenhorst M, Carr E, Stoyanova R, Kruger WD, Henske EP . (2004). J Biol Chem 279: 12706–12713.

  • Vezina C, Kudelski A, Sehgal SN . (1975). J Antibiotics 28: 721–726.

  • Wedaman KP, Reinke A, Anderson S, Yates III J, McCaffery JM, Powers T . (2003). Mol Biol Cell 14: 1204–1220.

  • Weng QP, Andrabi K, Klippel A, Kozlowski MT, Williams LT, Avruch J . (1995a). Proc Natl Acad Sci USA 92: 5744–5748.

  • Weng QP, Andrabi K, Kozlowski MT, Grove JR, Avruch J . (1995b). Mol Cell Biol 15: 2333–2340.

  • Weng QP, Kozlowski M, Belham C, Zhang A, Comb MJ, Avruch J . (1998). J Biol Chem 273: 16621–16629.

  • Wu S, Mikhailov A, Kallo-Hosein H, Hara K, Yonezawa K, Avruch J . (2002). Biochim Biophys Acta 1542: 41–56.

  • Yamagata K, Sanders LK, Kaufmann WE, Yee W, Barnes CA, Nathans D et al. (1994). J Biol Chem 269: 16333–16339.

  • Yang W, Tabancay Jr AP, Urano J, Tamanoi F . (2001). Mol Microbiol 41: 1339–1347.

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D . (2003). Nat Cell Biol 5: 578–581.

Download references

Acknowledgements

This work was supported by NIH Grants DK17776 and CA73818 (to JA) and by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to KY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Avruch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avruch, J., Hara, K., Lin, Y. et al. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene 25, 6361–6372 (2006). https://doi.org/10.1038/sj.onc.1209882

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209882

Keywords

This article is cited by

Search

Quick links