Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Frequent loss of chromosome 9, homozygous CDKN2A/p14ARF/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas

Abstract

The molecular pathogenesis of pleomorphic xanthoastrocytoma (PXA), a rare astrocytic brain tumor with a relatively favorable prognosis, is still poorly understood. We characterized 50 PXAs by comparative genomic hybridization (CGH) and found the most common imbalance to be loss on chromosome 9 in 50% of tumors. Other recurrent losses affected chromosomes 17 (10%), 8, 18, 22 (4% each). Recurrent gains were identified on chromosomes X (16%), 7, 9q, 20 (8% each), 4, 5, 19 (4% each). Two tumors demonstrated amplifications mapping to 2p23–p25, 4p15, 12q13, 12q21, 21q21 and 21q22. Analysis of 10 PXAs with available high molecular weight DNA by high-resolution array-based CGH indicated homozygous 9p21.3 deletions involving the CDKN2A/p14ARF/CDKN2B loci in six tumors (60%). Interphase fluorescence in situ hybridization to tissue sections confirmed the presence of tumor cells with homozygous 9p21.3 deletions. Mutational analysis of candidate genes on 9q, PTCH and TSC1, revealed no mutations in PXAs with 9q loss and no evidence of TSC1 promoter methylation. However, PXAs consistently showed low TSC1 transcript levels. Taken together, our study identifies loss of chromosome 9 as the most common chromosomal imbalance in PXAs and suggests important roles for homozygous CDKN2A/p14ARF/CDKN2B deletion as well as low TSC1 mRNA expression in these tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Becker AJ, Lobach M, Klein H, Normann S, Nothen MM, von Deimling A et al. (2001). Mutational analysis of TSC1 and TSC2 genes in gangliogliomas. Neuropathol Appl Neurobiol 27: 105–114.

    Article  CAS  Google Scholar 

  • du Manoir S, Speicher MR, Joos S, Schrock E, Popp S, Dohner H et al. (1993). Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 90: 590–610.

    Article  CAS  Google Scholar 

  • Giannini C, Hebrink D, Scheithauer BW, Dei Tos AP, James CD . (2001). Analysis of p53 mutation and expression in pleomorphic xanthoastrocytoma. Neurogenetics 3: 159–162.

    Article  CAS  Google Scholar 

  • Giannini C, Scheithauer BW, Burger PC, Brat DJ, Wollan PC, Lach B et al. (1999). Pleomorphic xanthoastrocytoma: what do we really know about it? Cancer 85: 2033–2045.

    Article  CAS  Google Scholar 

  • Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A et al. (1996). Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85: 841–851.

    Article  CAS  Google Scholar 

  • Harris SL, Levine AJ . (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24: 2899–2908.

    Article  CAS  Google Scholar 

  • Jiang WG, Sampson J, Martin TA, Lee-Jones L, Watkins G, Douglas-Jones A et al. (2005). Tuberin and hamartin are aberrantly expressed and linked to clinical outcome in human breast cancer: the role of promoter methylation of TSC genes. Eur J Cancer 41: 1628–1636.

    Article  CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F et al. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–821.

    Article  CAS  Google Scholar 

  • Kaulich K, Blaschke B, Numann A, von Deimling A, Wiestler OD, Weber RG et al. (2002). Genetic alterations commonly found in diffusely infiltrating cerebral gliomas are rare or absent in pleomorphic xanthoastrocytomas. J Neuropathol Exp Neurol 61: 1092–1099.

    Article  CAS  Google Scholar 

  • Kepes JJ, Louis DN, Giannini C, Paulus W . (2000). Pathology and genetics of tumours of the nervous system. In: Kleihues P, Cavenee WK (eds). World Health Organization Classification of Tumours. IARC Press: Lyon, pp. 52–54.

    Google Scholar 

  • Knowles MA, Habuchi T, Kennedy W, Cuthbert-Heavens D . (2003). Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Res 63: 7652–7656.

    CAS  PubMed  Google Scholar 

  • Li YS, Ramsay DA, Fan YS, Armstrong RF, Del Maestro RF . (1995). Cytogenetic evidence that a tumor suppressor gene in the long arm of chromosome 1 contributes to glioma growth. Cancer Genet Cytogenet 84: 46–50.

    Article  CAS  Google Scholar 

  • Lichter P, Bentz M, Joos S . (1995). Detection of chromosomal aberrations by means of molecular cytogenetics: painting of chromosomes and chromosomal subregions and comparative genomic hybridization. Methods Enzymol 254: 334–359.

    Article  CAS  Google Scholar 

  • Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J . (2005). Rheb binds and regulates the mTOR kinase. Curr Biol 15: 702–713.

    Article  CAS  Google Scholar 

  • Möllemann M, Wolter M, Felsberg J, Collins VP, Reifenberger G . (2005). Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer 113: 379–385.

    Article  Google Scholar 

  • Paulus W, Lisle DK, Tonn JC, Wolf HK, Roggendorf W, Reeves SA et al. (1996). Molecular genetic alterations in pleomorphic xanthoastrocytoma. Acta Neuropathol (Berlin) 91: 293–297.

    Article  CAS  Google Scholar 

  • Pei XH, Xiong Y . (2005). Biochemical and cellular mechanisms of mammalian CDK inhibitors: a few unresolved issues. Oncogene 24: 2787–2795.

    Article  CAS  Google Scholar 

  • Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207–211.

    Article  CAS  Google Scholar 

  • Reifenberger G, Collins VP . (2004). Pathology and molecular genetics of astrocytic gliomas. J Mol Med 82: 656–670.

    Article  CAS  Google Scholar 

  • Reifenberger G, Kaulich K, Wiestler OD, Blumcke I . (2003). Expression of the CD34 antigen in pleomorphic xanthoastrocytomas. Acta Neuropathol (Berlin) 105: 358–364.

    CAS  Google Scholar 

  • Reifenberger J, Ring GU, Gies U, Cobbers L, Oberstrass J, An HX et al. (1996). Analysis of p53 mutation and epidermal growth factor receptor amplification in recurrent gliomas with malignant progression. J Neuropathol Exp Neurol 55: 822–831.

    Article  CAS  Google Scholar 

  • Reifenberger J, Wolter M, Knobbe CB, Kohler B, Schonicke A, Scharwachter C et al. (2005). Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 152: 43–51.

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (eds) (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.

    Google Scholar 

  • Sawyer JR, Roloson GJ, Chadduck WM, Boop FA . (1991). Cytogenetic findings in a pleomorphic xanthoastrocytoma. Cancer Genet Cytogenet 55: 225–230.

    Article  CAS  Google Scholar 

  • Sawyer JR, Thomas EL, Roloson GJ, Chadduck WM, Boop FA . (1992). Telomeric associations evolving to ring chromosomes in a recurrent pleomorphic xanthoastrocytoma. Cancer Genet Cytogenet 60: 152–157.

    Article  CAS  Google Scholar 

  • Schwaenen C, Nessling M, Wessendorf S, Salvi T, Wrobel G, Radlwimmer B et al. (2004). Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci USA 101: 1039–1044.

    Article  CAS  Google Scholar 

  • Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H et al. (1997). Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Gene Chromosome Canc 20: 399–407.

    Article  CAS  Google Scholar 

  • van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler DS et al. (2003). Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 163: 1033–1043.

    Article  CAS  Google Scholar 

  • van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S et al. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277: 805–808.

    Article  CAS  Google Scholar 

  • Weber RG, Sabel M, Reifenberger J, Sommer C, Oberstrass J, Reifenberger G et al. (1996). Characterization of genomic alterations associated with glioma progression by comparative genomic hybridization. Oncogene 13: 983–994.

    CAS  PubMed  Google Scholar 

  • Yin XL, Hui AB, Liong EC, Ding M, Chang AR, Ng HK . (2002). Genetic imbalances in pleomorphic xanthoastrocytoma detected by comparative genomic hybridization and literature review. Cancer Genet Cytogenet 132: 14–19.

    Article  CAS  Google Scholar 

  • Zielinski B, Gratias S, Toedt G, Mendrzyk F, Stange DE, Radlwimmer B et al. (2005). Detection of chromosomal imbalances in retinoblastoma by matrix-based comparative genomic hybridization. Gene Chromosome Canc 43: 294–301.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Krebshilfe (10-1639-Re3; 70-3163-Wi3), the German Ministry for Education and Research (National Network for Genome Research, NGFN-2) and the BONFOR program of the Medical Faculty, Rheinische Friedrich-Wilhelms-University, Bonn (O-149.0058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R G Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, R., Hoischen, A., Ehrler, M. et al. Frequent loss of chromosome 9, homozygous CDKN2A/p14ARF/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas. Oncogene 26, 1088–1097 (2007). https://doi.org/10.1038/sj.onc.1209851

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209851

Keywords

This article is cited by

Search

Quick links