Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Transcriptional networks of knockout cell lines identify functional specificities of H-Ras and N-Ras: significant involvement of N-Ras in biotic and defense responses

Abstract

We characterized differential gene expression profiles of fibroblast cell lines harboring single or double-homozygous null mutations in H-ras and N-ras. Whereas the expression level of the individual H-, N- and K-ras genes appeared unaffected by the presence or absence of the other ras loci, significant differences were observed between the expression profiles of cells missing N-ras and/or H-ras. Absence of N-ras produced much stronger effects than absence of H-ras over the profile of the cellular transcriptome. N-ras−/− and H-ras−/− fibroblasts displayed rather antagonistic expression profiles and the transcriptome of H-ras−/− cells was significantly closer to that of wild-type fibroblasts than to that of N-ras−/− cells. Classifying all differentially expressed genes into functional categories suggested specific roles for H-Ras and N-Ras. It was particularly striking in N-ras−/− cells the upregulation of a remarkable number of immunity-related genes, as well as of several loci involved in apoptosis. Reverse-phase protein array assays demonstrated in the same N-ras−/− cells the overexpression and nuclear migration of tyrosine phosphorylated signal transducer and activator of transcription 1 (Stat1) which was concomitant with transcriptional activation mediated by interferon-stimulated response elements. Significantly enhanced numbers of apoptotic cells were also detected in cultures of N-ras−/− cells. Our data support the notion that different Ras isoforms play functionally distinct cellular roles and indicate that N-Ras is significantly involved in immune modulation/host defense and apoptotic responses

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Barash Y, Dehan E, Krupsky M, Franklin W, Geraci M, Friedman N et al. (2004). Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays. Bioinformatics 20: 839–846.

    Article  CAS  Google Scholar 

  • Beadling C, Guschin D, Witthuhn BA, Ziemiecki A, Ihle JN, Kerr IM et al. (1994). Activation of JAK kinases and STAT proteins by interleukin-2 and interferon alpha, but not the T cell antigen receptor, in human T lymphocytes. EMBO J 13: 5605–5615.

    Article  CAS  Google Scholar 

  • Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I . (2001). Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279–284.

    Article  CAS  Google Scholar 

  • Bollag G, McCormick F . (1991). Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature 351: 576–579.

    Article  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP . (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.

    Article  CAS  Google Scholar 

  • Bos JL . (1989). ras oncogenes in human cancer: a review. Cancer Res 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  • Brem R, Certa U, Neeb M, Nair AP, Moroni C . (2001). Global analysis of differential gene expression after transformation with the v-H-ras oncogene in a murine tumor model. Oncogene 20: 2854–2858.

    Article  CAS  Google Scholar 

  • Clyde-Smith J, Silins G, Gartside M, Grimmond S, Etheridge M, Apolloni A et al. (2000). Characterization of RasGRP2, a plasma membrane-targeted, dual specificity Ras/Rap exchange factor. J Biol Chem 275: 32260–32267.

    Article  CAS  Google Scholar 

  • Colicelli J . (2004). Human RAS superfamily proteins and related GTPases. Sci STKE 2004: RE13.

    PubMed  PubMed Central  Google Scholar 

  • Croonquist PA, Linden MA, Zhao F, Van Ness BG . (2003). Gene profiling of a myeloma cell line reveals similarities and unique signatures among IL-6 response, N-ras-activating mutations, and coculture with bone marrow stromal cells. Blood 102: 2581–2592.

    Article  CAS  Google Scholar 

  • Davies SA, Houslay MD, Wakelam MJ . (1989). The effects of p21N-ras expression in NIH-3T3 cells upon cyclic AMP metabolism. Biochim Biophys Acta 1013: 173–179.

    Article  CAS  Google Scholar 

  • de Castro IP, Diaz R, Malumbres M, Hernandez MI, Jagirdar J, Jimenez M et al. (2003). Mice deficient for N-ras: impaired antiviral immune response and T-cell function. Cancer Res 63: 1615–1622.

    Google Scholar 

  • Dumaz N, Marais R . (2005). Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J 272: 3491–3504.

    Article  CAS  Google Scholar 

  • Ehrhardt A, David MD, Ehrhardt GR, Schrader JW . (2004). Distinct mechanisms determine the patterns of differential activation of H-Ras, N-Ras, K-Ras 4B, and M-Ras by receptors for growth factors or antigen. Mol Cell Biol 24: 6311–6323.

    Article  CAS  Google Scholar 

  • Eskandarpour M, Kiaii S, Zhu C, Castro J, Sakko AJ, Hansson J . (2005). Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int J Cancer 115: 65–73.

    Article  CAS  Google Scholar 

  • Espina V, Mehta AI, Winters ME, Calvert V, Wulfkuhle J, Petricoin EF et al. (2003). Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 3: 2091–2100.

    Article  CAS  Google Scholar 

  • Esteban LM, Vicario-Abejon C, Fernandez-Salguero P, Fernandez-Medarde A, Swaminathan N, Yienger K et al. (2001). Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 21: 1444–1452.

    Article  CAS  Google Scholar 

  • Hamilton M, Wolfman A . (1998). Oncogenic Ha-Ras-dependent mitogen-activated protein kinase activity requires signaling through the epidermal growth factor receptor. J Biol Chem 273: 28155–28162.

    Article  CAS  Google Scholar 

  • Hancock JF . (2003). Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4: 373–384.

    Article  CAS  Google Scholar 

  • Herrmann PC, Gillespie JW, Charboneau L, Bichsel VE, Paweletz CP, Calvert VS et al. (2003). Mitochondrial proteome: altered cytochrome c oxidase subunit levels in prostate cancer. Proteomics 3: 1801–1810.

    Article  CAS  Google Scholar 

  • Ihrie RA, Marques MR, Nguyen BT, Horner JS, Papazoglu C, Bronson RT et al. (2005). Perp is a p63-regulated gene essential for epithelial integrity. Cell 120: 843–856.

    Article  CAS  Google Scholar 

  • Improta T, Pine R . (1997). Susceptibility to virus infection is determined by a Stat-mediated response to the autocrine effect of virus-induced type I interferon. Cytokine 9: 383–393.

    Article  CAS  Google Scholar 

  • Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . (2003a). Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.

    Article  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U . (2003b). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264.

    Article  Google Scholar 

  • Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E et al. (1997). K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11: 2468–2481.

    Article  CAS  Google Scholar 

  • Jones MK, Jackson JH . (1998). Ras-GRF activates Ha-Ras, but not N-Ras or K-Ras 4B, protein in vivo. J Biol Chem 273: 1782–1787.

    Article  CAS  Google Scholar 

  • Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW . (2002). Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285: 1–24.

    Article  CAS  Google Scholar 

  • Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T et al. (1997). K-ras is essential for the development of the mouse embryo. Oncogene 15: 1151–1159.

    Article  CAS  Google Scholar 

  • Leon J, Guerrero I, Pellicer A . (1987). Differential expression of the ras gene family in mice. Mol Cell Biol 7: 1535–1540.

    Article  CAS  Google Scholar 

  • Li C, Wong WH . (2001). Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98: 31–36.

    Article  CAS  Google Scholar 

  • Liao J, Wolfman JC, Wolfman A . (2003). K-ras regulates the steady-state expression of matrix metalloproteinase 2 in fibroblasts. J Biol Chem 278: 31871–31878.

    Article  CAS  Google Scholar 

  • Maher J, Baker DA, Manning M, Dibb NJ, Roberts IA . (1995). Evidence for cell-specific differences in transformation by N-, H- and K-ras. Oncogene 11: 1639–1647.

    CAS  PubMed  Google Scholar 

  • Matallanas D, Sanz-Moreno V, Arozarena I, Calvo F, Agudo-Ibanez L, Santos E et al. (2006). Distinct utilization of effectors and biological outcomes resulting from site-specific Ras activation: Ras functions in lipid rafts and Golgi complex are dispensable for proliferation and transformation. Mol Cell Biol 26: 100–116.

    Article  CAS  Google Scholar 

  • Murtagh F . (1985). Multidimensional Clustering Algorithms. COMPSTAT Lectures 4. Physica-Verlag: Wuerzburg.

    Google Scholar 

  • Ohnami S, Aoki K, Yoshida K, Hatanaka K, Suzuki K, Sasaki H et al. (2003). Expression profiles of pancreatic cancer cell lines infected with antisense K-ras-expressing adenoviral vector. Biochem Biophys Res Commun 309: 798–803.

    Article  CAS  Google Scholar 

  • Oliva JL, Zarich N, Martinez N, Jorge R, Castrillo A, Azanedo M et al. (2004). The P34G mutation reduces the transforming activity of K-Ras and N-Ras in NIH 3T3 cells but not of H-Ras. J Biol Chem 279: 33480–33491.

    Article  CAS  Google Scholar 

  • Perez de Castro I, Bivona TG, Philips MR, Pellicer A . (2004). Ras activation in Jurkat T cells following low-grade stimulation of the T-cell receptor is specific to N-Ras and occurs only on the Golgi apparatus. Mol Cell Biol 24: 3485–3496.

    Article  Google Scholar 

  • Petricoin III EF, Ito S, Williams BL, Audet S, Stancato LF, Gamero A et al. (1997). Antiproliferative action of interferon-alpha requires components of T-cell-receptor signalling. Nature 390: 629–632.

    Article  CAS  Google Scholar 

  • Pine R, Canova A, Schindler C . (1994). Tyrosine phosphorylated p91 binds to a single element in the ISGF2/1RF-1 promoter to mediate induction by IFN alpha and IFN gamma, and is likely to autoregulate the p91 gene. EMBO J 13: 158–167.

    Article  CAS  Google Scholar 

  • Platanias LC . (2005). Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5: 375–386.

    Article  CAS  Google Scholar 

  • Plowman SJ, Hancock JF . (2005). Ras signaling from plasma membrane and endomembrane microdomains. Biochim Biophys Acta 1746: 274–283.

    Article  CAS  Google Scholar 

  • Plowman SJ, Williamson DJ, O’Sullivan MJ, Doig J, Ritchie AM, Harrison DJ et al. (2003). While K-ras is essential for mouse development, expression of the K-ras 4A splice variant is dispensable. Mol Cell Biol 23: 9245–9250.

    Article  CAS  Google Scholar 

  • Potenza N, Vecchione C, Notte A, De Rienzo A, Rosica A, Bauer L et al. (2005). Replacement of K-Ras with H-Ras supports normal embryonic development despite inducing cardiovascular pathology in adult mice. EMBO Rep 6: 432–437.

    Article  CAS  Google Scholar 

  • Reuther GW, Der CJ . (2000). The Ras branch of small GTPases: Ras family members don’t fall far from the tree. Curr Opin Cell Biol 12: 157–165.

    Article  CAS  Google Scholar 

  • Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M et al. (2005). An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307: 1746–1752.

    Article  CAS  Google Scholar 

  • Rojas JM, Santos E . (2002). ras genes and human cancer: different implications and different roles. Curr Genom 3: 295–311.

    Article  CAS  Google Scholar 

  • Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E et al. (1999). Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol 1: 98–105.

    Article  CAS  Google Scholar 

  • Ruiz-Vela A, Opferman JT, Cheng EH, Korsmeyer SJ . (2005). Proapoptotic BAX and BAK control multiple initiator caspases. EMBO Rep 6: 379–385.

    Article  CAS  Google Scholar 

  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D et al. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101: 6062–6067.

    Article  CAS  Google Scholar 

  • Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C et al. (2005). An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 37: 48–55.

    Article  CAS  Google Scholar 

  • Takahashi C, Contreras B, Iwanaga T, Takegami Y, Bakker A, Bronson RT et al. (2006). Nras loss induces metastatic conversion of Rb1-deficient neuroendocrine thyroid tumor. Nat Genet 38: 118–123.

    Article  CAS  Google Scholar 

  • Townsend PA, Scarabelli TM, Davidson SM, Knight RA, Latchman DS, Stephanou A . (2004). STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. J Biol Chem 279: 5811–5820.

    Article  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121.

    Article  CAS  Google Scholar 

  • Umanoff H, Edelmann W, Pellicer A, Kucherlapati R . (1995). The murine N-ras gene is not essential for growth and development. Proc Natl Acad Sci USA 92: 1709–1713.

    Article  CAS  Google Scholar 

  • Vasseur S, Malicet C, Calvo EL, Labrie C, Berthezene P, Dagorn JC et al. (2003). Gene expression profiling by DNA microarray analysis in mouse embryonic fibroblasts transformed by rasV12 mutated protein and the E1A oncogene. Mol Cancer 2: 19.

    Article  Google Scholar 

  • Voice JK, Klemke RL, Le A, Jackson JH . (1999). Four human ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility. J Biol Chem 274: 17164–17170.

    Article  CAS  Google Scholar 

  • Walsh AB, Bar-Sagi D . (2001). Differential activation of the Rac pathway by Ha-Ras and K-Ras. J Biol Chem 276: 15609–15615.

    Article  CAS  Google Scholar 

  • Wolfman JC, Palmby T, Der CJ, Wolfman A . (2002). Cellular N-Ras promotes cell survival by downregulation of Jun N-terminal protein kinase and p38. Mol Cell Biol 22: 1589–1606.

    Article  CAS  Google Scholar 

  • Wulfkuhle JD, Aquino JA, Calvert VS, Fishman DA, Coukos G, Liotta LA et al. (2003). Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics 3: 2085–2090.

    Article  CAS  Google Scholar 

  • Yan J, Roy S, Apolloni A, Lane A, Hancock JF . (1998). Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J Biol Chem 273: 24052–24056.

    Article  CAS  Google Scholar 

  • Zuber J, Tchernitsa OI, Hinzmann B, Schmitz AC, Grips M, Hellriegel M et al. (2000). A genome-wide survey of RAS transformation targets. Nat Genet 24: 144–152.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R Pine (The Public Health Research Institute, Newark, NJ) for ISRE and GAS reporter constructs and E Petricoin (FDA/NIH Proteomic Facility, Bethesda, MD, USA) for support with protein array layout generation and analysis. This work was supported by Grants SAF2003-04177 and GEN2003-20239-C06-02 from MEC and Grant PI021570 from MSC, as well as institutional support from Red Temática C03/10 de Investigación de Centros de Cáncer (RTICCC) from ISCIII, MSC, Spain. CG was supported by Ramón y Cajal Program. EC was a predoctoral fellow from MEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellano, E., De Las Rivas, J., Guerrero, C. et al. Transcriptional networks of knockout cell lines identify functional specificities of H-Ras and N-Ras: significant involvement of N-Ras in biotic and defense responses. Oncogene 26, 917–933 (2007). https://doi.org/10.1038/sj.onc.1209845

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209845

Keywords

This article is cited by

Search

Quick links