Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation

Abstract

In response to DNA damage, mammalian cells activate various DNA repair pathways to remove DNA lesions and, meanwhile, halt cell cycle progressions to allow sufficient time for repair. The nucleotide excision repair (NER) and the ATR-dependent cell cycle checkpoint activation are two major cellular responses to DNA damage induced by UV irradiation. However, how these two processes are coordinated in the response is poorly understood. Here we showed that the essential NER factor XPA (xeroderma pigmentosum group A) underwent nuclear accumulation upon UV irradiation, and strikingly, such an event occurred in an ATR (Ataxia-Telangiectasia mutated and RAD3-related)-dependent manner. Either treatment of cells with ATR kinase inhibitors or transfection of cells with small interfering RNA targeting ATR compromised the UV-induced XPA nuclear translocation. Consistently, the ATR-deficient cells displayed no substantial XPA nuclear translocation while the translocation remained intact in ATM (Ataxia-Telangiectasia mutated)-deficient cells in response to UV irradiation. Moreover, we found that ATR is required for the UV-induced nuclear focus formation of XPA. Taken together, our results suggested that the ATR checkpoint pathway may modulate NER activity through the regulation of XPA redistribution in human cells upon UV irradiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abraham RT . (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15: 2177–2196.

    Article  CAS  PubMed  Google Scholar 

  • Adimoolam S, Ford JM . (2002). p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci USA 99: 12985–12990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barr SM, Leung CG, Chang EE, Cimprich KA . (2003). ATR kinase activity regulates the intranuclear translocation of ATR and RPA following ionizing radiation. Curr Biol 13: 1047–1051.

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas C, Lukas J . (2004). Checking on DNA damage in S-phase. Nat Rev Mol Cell Biol 5: 792–804.

    Article  CAS  PubMed  Google Scholar 

  • Cliby WA, Roberts CJ, Cimprich KA, Stringer CM, Lamb JR, Schreiber SL et al. (1998). Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J 17: 159–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa RM, Chigancas V, Galhardo Rda S, Carvalho H, Menck CF . (2003). The eukaryotic nucleotide excision repair pathway. Biochimie 85: 1083–1099.

    Article  CAS  PubMed  Google Scholar 

  • Dart DA, Adams KE, Akerman I, Lakin ND . (2004). Recruitment of the cell cycle checkpoint kinase ATR to chromatin during S-phase. J Biol Chem 279: 16433–16440.

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Kachnic L, Zhang J, Powell SN, Xia F . (2004). DNA damage induces p53-dependent BRCA1 nuclear export. J Biol Chem 279: 28574–28584.

    Article  CAS  PubMed  Google Scholar 

  • Ford JM . (2005). Regulation of DNA damage recognition and nucleotide excision repair: another role for p53. Mutat Res 577: 195–202.

    Article  CAS  PubMed  Google Scholar 

  • Garinis GA, Mitchell JR, Moorhouse MJ, Hanada K, de Waard H, Vandeputte D et al. (2005). Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks. EMBO J 24: 3952–3962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gately DP, Hittle JC, Chan GK, Yen TJ . (1998). Characterization of ATM expression, localization, and associated DNA-dependent protein kinase activity. Mol Biol Cell 9: 2361–2374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannattasio M, Lazzaro F, Longhese MP, Plevani P, Muzi-Falconi M . (2004). Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint. EMBO J 23: 429–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzder SN, Sommers CH, Prakash L, Prakash S . (2006). Complex formation with damage recognition protein Rad14 is essential for Saccharomyces cerevisiae Rad1–Rad10 nuclease to perform its function in nucleotide excision repair in vivo. Mol Cell Biol 26: 1135–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iakoucheva LM, Kimzey AL, Masselon CD, Smith RD, Dunker AK, Ackerman EJ . (2001). Aberrant mobility phenomena of the DNA repair protein XPA. Protein Sci 10: 1353–1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Yang LY . (1999). Cell cycle checkpoint abrogator UCN-01 inhibits DNA repair: association with attenuation of the interaction of XPA and ERCC1 nucleotide excision repair proteins. Cancer Res 59: 4529–4534.

    CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J . (2004). Cell-cycle checkpoints and cancer. Nature 432: 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Lim DS . (2000). The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1: 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Kim ST, Lim DS, Canman CE, Kastan MB . (1999). Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem 274: 37538–37543.

    Article  CAS  PubMed  Google Scholar 

  • Koberle B, Roginskaya V, Wood RD . (2006). XPA protein as a limiting factor for nucleotide excision repair and UV sensitivity in human cells. DNA Repair (Amst) 5: 641–648.

    Article  Google Scholar 

  • Liu Y, Liu Y, Yang Z, Utzat C, Wang G, Basu AK et al. (2005). Cooperative interaction of human XPA stabilizes and enhances specific binding of XPA to DNA damage. Biochemistry 44: 7361–7368.

    Article  CAS  PubMed  Google Scholar 

  • Miura N, Miyamoto I, Asahina H, Satokata I, Tanaka K, Okada Y . (1991). Identification and characterization of xpac protein, the gene product of the human XPAC (xeroderma pigmentosum group A complementing) gene. J Biol Chem 266: 19786–19789.

    CAS  PubMed  Google Scholar 

  • Miyamoto I, Miura N, Niwa H, Miyazaki J, Tanaka K . (1992). Mutational analysis of the structure and function of the xeroderma pigmentosum group A complementing protein. Identification of essential domains for nuclear localization and DNA excision repair. J Biol Chem 267: 12182–12187.

    CAS  PubMed  Google Scholar 

  • Neecke H, Lucchini G, Longhese MP . (1999). Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1- and Rad53-dependent checkpoint in budding yeast. EMBO J 18: 4485–4497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nghiem P, Park PK, Kim Ys YS, Desai BN, Schreiber SL . (2002). ATR is not required for p53 activation but synergizes with p53 in the replication checkpoint. J Biol Chem 277: 4428–4434.

    Article  CAS  PubMed  Google Scholar 

  • Nitta M, Saijo M, Kodo N, Matsuda T, Nakatsu Y, Tamai H et al. (2000). A novel cytoplasmic GTPase XAB1 interacts with DNA repair protein XPA. Nucleic Acids Res 28: 4212–4218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA . (2003). A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33: 497–501.

    Article  CAS  PubMed  Google Scholar 

  • O'Neill T, Dwyer AJ, Ziv Y, Chan DW, Lees-Miller SP, Abraham RH et al. (2000). Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J Biol Chem 275: 22719–22727.

    Article  CAS  PubMed  Google Scholar 

  • Rademakers S, Volker M, Hoogstraten D, Nigg AL, Mone MJ, Van Zeeland AA et al. (2003). Xeroderma pigmentosum group A protein loads as a separate factor onto DNA lesions. Mol Cell Biol 23: 5755–5767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedl T, Hanaoka F, Egly JM . (2003). The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J 22: 5293–5303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S . (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73: 39–85.

    Article  CAS  PubMed  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM et al. (1999). Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59: 4375–4382.

    CAS  PubMed  Google Scholar 

  • Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT . (1998). Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res 58: 4375–4382.

    CAS  PubMed  Google Scholar 

  • Thoma BS, Vasquez KM . (2003). Critical DNA damage recognition functions of XPC-hHR23B and XPA-RPA in nucleotide excision repair. Mol Carcinogen 38: 1–13.

    Article  CAS  Google Scholar 

  • Volker M, Mone MJ, Karmakar P, van Hoffen A, Schul W, Vermeulen W et al. (2001). Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8: 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chin MY, Li G . (2006). The novel tumor suppressor p33ING2 enhances nucleotide excision repair via inducement of histone H4 acetylation and chromatin relaxation. Cancer Res 66: 1906–1911.

    Article  CAS  PubMed  Google Scholar 

  • Wright JA, Keegan KS, Herendeen DR, Bentley NJ, Carr AM, Hoekstra MF et al. (1998). Protein kinase mutants of human ATR increase sensitivity to UV and ionizing radiation and abrogate cell cycle checkpoint control. Proc Natl Acad Sci USA 95: 7445–7450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Shell SM, Yang Z, Zou Y . (2006). Phosphorylation of nucleotide excision repair factor XPA by ATR-dependent checkpoint pathway promotes cell survival in response to UV irradiation. Cancer Res 66: 2997–3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Shell SM, Zou Y . (2005a). Interaction and colocalization of Rad9/Rad1/Hus1 checkpoint complex with replication protein A in human cells. Oncogene 24: 4728–4735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Lu Y, Hu Y, Li R . (2005b). Cyclic AMP-dependent modification of gonad-selective TAF(II)105 in a human ovarian granulosa cell line. J Cell Biochem 96: 751–759.

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Kim S, Kastan MB . (2001). Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21: 3445–3450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Kim ST, Lim DS, Kastan MB . (2002). Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 22: 1049–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Teng Y, Lowndes NF, Waters R . (2001). RAD9, RAD24, RAD16 and RAD26 are required for the inducible nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers from the transcribed and non-transcribed regions of the Saccharomyces cerevisiae MFA2 gene. Mutat Res 485: 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Zhou BB, Elledge SJ . (2000). The DNA damage response: putting checkpoints in perspective. Nature 408: 433–439.

    Article  CAS  PubMed  Google Scholar 

  • Zou L, Cortez D, Elledge SJ . (2002). Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev 16: 198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Priscilla B Wyrick for her generous assistance in immunofluorescence measurements. This study was supported by NCI Grant CA86927 (to YZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Shell, S., Liu, Y. et al. ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation. Oncogene 26, 757–764 (2007). https://doi.org/10.1038/sj.onc.1209828

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209828

Keywords

This article is cited by

Search

Quick links