Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Differential effects of inactivated Axin1 and activated β-catenin mutations in human hepatocellular carcinomas

Abstract

Perturbations to the Wnt signaling pathway have been implicated in a large proportion of human hepatocellular carcinomas (HCCs). Activating β-catenin mutations and loss of function mutations in Axin1 are thought to be functionally equivalent. We examined the Wnt pathway in HCC by comparing the expression of β-catenin target genes and the level of β-catenin-dependent transcriptional activation, in 45 HCC tumors and four cell lines. Among these samples, β-catenin and AXIN1 were mutated in 20 and seven cases, respectively. We found a significant correlation between activated β-catenin mutations and overexpression of mRNA for the target genes glutamine synthetase (GS), G-protein-coupled receptor (GPR)49 and glutamate transporter (GLT)-1 (P=0.0001), but not for the genes ornithine aminotransferase, LECT2, c-myc and cyclin D1. We also showed that GS is a good immunohistochemical marker of β-catenin activation in HCC. However, we observed no induction of GS, GPR49 or GLT-1 in the five inactivated Axin1 tumors. β-Catenin-dependent transcriptional activation in two Axin1-mutated HCC cell lines was much weaker than in β-catenin-mutated cell lines. Our results strongly suggest that in HCC, contrary to expectation, the loss of function of Axin1 is not equivalent to the gain of function of β-catenin. Our results also suggest that the tumor suppressor function of Axin1 in HCC may be related to another, non-Wnt pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Befeler AS, Di Bisceglie AM . (2002). Hepatocellular carcinoma: diagnosis and treatment. Gastroenterology 122: 1609–1619.

    Article  PubMed  Google Scholar 

  • Cadoret A, Ovejero C, Terris B, Souil E, Levy L, Lamers WH et al. (2002). New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene 21: 8293–8301.

    Article  CAS  PubMed  Google Scholar 

  • Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G, Kahn A et al. (2004). Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA 101: 17216–17221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O et al. (1998). Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 95: 8847–8851.

    Article  CAS  PubMed  Google Scholar 

  • Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y et al. (2001). Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway. Mol Cell Biol 21: 5132–5141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giles RH, van Es JH, Clevers H . (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653: 1–24.

    CAS  PubMed  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Hsu HC, Jeng YM, Mao TL, Chu JS, Lai PL, Peng SY . (2000). Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 157: 763–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Fujii H, Sankila A, Mahler-Araujo BM, Matsuda M, Cathomas G et al. (1999). Beta-catenin mutations are frequent in human hepatocellular carcinomas. Am J Pathol 155: 1795–1801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275: 1784–1787.

    Article  CAS  PubMed  Google Scholar 

  • Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F et al. (2001). Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120: 1763–1773.

    Article  CAS  PubMed  Google Scholar 

  • Laurent-Puig P, Zucman-Rossi J . (2006). Genetics of hepatocellular tumors. Oncogene 25: 3778–3786.

    Article  CAS  PubMed  Google Scholar 

  • Legoix P, Bluteau O, Bayer J, Perret C, Balabaud C, Belghiti J et al. (1999). Beta-catenin mutations in hepatocellular carcinoma correlate with a low. Oncogene 18: 4044–4046.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi Y, Iwao K, Nagasawa Y, Aihara T, Sasaki Y, Imaoka S et al. (1998). Activation of the beta-catenin gene in primary hepatocellular. Cancer Res 58: 2524–2527.

    CAS  PubMed  Google Scholar 

  • Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, Buendia MA . (1999). Nuclear accumulation of mutated beta-catenin in hepatocellular. Am J Pathol 155: 703–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovejero C, Cavard C, Perianin A, Hakvoort T, Vermeulen J, Godard C et al. (2004). Identification of the leukocyte cell-derived chemotaxin 2 as a direct target gene of beta-catenin in the liver. Hepatology 40: 167–176.

    Article  CAS  PubMed  Google Scholar 

  • Rui Y, Xu Z, Lin S, Li Q, Rui H, Luo W et al. (2004). Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J 23: 4583–4594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salahshor S, Woodgett JR . (2005). The links between axin and carcinogenesis. J Clin Pathol 58: 225–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T et al. (2000). AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 24: 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi K, Roberts LR, Aderca IN, Dong X, Qian C, Murphy LM et al. (2002). Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 21: 4863–4871.

    Article  CAS  PubMed  Google Scholar 

  • Terris B, Pineau P, Bregeaud L, Valla D, Belghiti J, Tiollais P et al. (1999). Close correlation between beta-catenin gene alterations and nuclear. Oncogene 18: 6583–6588.

    Article  CAS  PubMed  Google Scholar 

  • Tetsu O, McCormick F . (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422–426.

    CAS  PubMed  Google Scholar 

  • Ueta T, Ikeguchi M, Hirooka Y, Kaibara N, Terada T . (2002). Beta-catenin and cyclin D1 expression in human hepatocellular carcinoma. Oncol Rep 9: 1197–1203.

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Sakamoto M, Fujii G, Tsuiji H, Kenetaka K, Asaka M et al. (2003). Overexpression of orphan G-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas with beta-catenin mutations. Hepatology 37: 528–533.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Neo SY, Han J, Lin SC . (2000). Dimerization choices control the ability of axin and dishevelled to activate c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem 275: 25008–25014.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Neo SY, Wang X, Han J, Lin SC . (1999). Axin forms a complex with MEKK1 and activates c-Jun NH(2)-terminal kinase/stress-activated protein kinase through domains distinct from Wnt signaling. J Biol Chem 274: 35247–35254.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Valérie Paradis and Jacques Belghiti at Beaujon Hospital (Clichy, France) who provided four AXIN1 tumor samples for validation. We also thank all the member of the C Perret's team for their helpful discussions. This work was supported by INSERM, CNRS, the ‘Comite de Paris de la Ligue Nationale contre le Cancer’, the ‘Association pour la Recherche contre le Cancer’ and the SNFGE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Perret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zucman-Rossi, J., Benhamouche, S., Godard, C. et al. Differential effects of inactivated Axin1 and activated β-catenin mutations in human hepatocellular carcinomas. Oncogene 26, 774–780 (2007). https://doi.org/10.1038/sj.onc.1209824

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209824

Keywords

This article is cited by

Search

Quick links