Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Nuclear–mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells

Abstract

Analyses of genome orthologs in cancer on the background of tumor heterogeneity, coupled with the recent identification that the tumor propagating capacity resides within a very small fraction of cells (the tumor stem cells-TSCs), has not been achieved. Here, we describe a strategy to explore genetic drift in the mitochondrial genome accompanying varying stem cell dynamics in epithelial ovarian cancer. A major and novel outcome is the identification of a specific mutant mitochondrial DNA profile associated with the TSC lineage that is drastically different from the germ line profile. This profile, however, is often camouflaged in the primary tumor, and sometimes may not be detected even after metastases, questioning the validity of whole tumor profiling towards determining individual prognosis. Continuing mutagenesis in subsets with a mutant mitochondrial genome could result in transformation through a cooperative effect with nuclear genes – a representative example in our study is a tumor suppressor gene viz. cAMP responsive element binding binding protein. This specific profile could be a critical predisposing step undertaken by a normal stem cell to overcome a tightly regulated mutation rate and DNA repair in its evolution towards tumorigenesis. Our findings suggest that varying stem cell dynamics and mutagenesis define TSC progression that may clinically translate into increasing tumor aggression with serious implications for prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

CREBBP :

cAMP responsive element binding binding protein

TSC:

tumor stem cells

mtDNA:

mitochondrial DNA

ROS:

reactive oxygen species

AMP:

adenosine mono-phosphate

CRS:

Cambridge Reference Sequence

NHRD:

nuclear hormone receptor domain

KIX:

CREB binding domain

HAT:

histone acetyltransferase

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . (2003). Proc Natl Acad Sci USA 100: 3983–3988.

  • Alonso A, Alves C, Suarez-Mier MP, Albarran C, Pereira L, Fernandez de Simon L et al. (2005). J Clin Pathol 58: 83–86.

  • Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N . (1999). Nat Genet 23: 147.

  • Bapat SA, Mali AM, Koppikar CB, Kurrey NK . (2005). Cancer Res 65: 3025–3029.

  • Beckman RA, Loeb LA . (2005). Genetics 171: 2123–2131.

  • Bonnet D, Dick JE . (1997). Nat Med 3: 730–737.

  • Calabrese P, Tavare S, Shibata D . (2004). Am J Pathol 164: 1337–1346.

  • Choi J, Jung H, Kim H, Cho H . (2000). Bioinformatics 16: 1056–1058.

  • Coller HA, Khrapko K, Herrero-Jimenez P, Vatland JA, Li-Sucholeiki XC, Thilly WG . (2005). Mutat Res 578: 256–271.

  • Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA et al. (2002). Mol Cell 9: 175–186.

  • Deng Z, Chen C, Chamberlin M, Lu F, Blobel GA, Speicher D et al. (2003). Mol Cell Biol 23: 2633–2644.

  • Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM . (1999). Nature 399: 491–496.

  • Feinberg AP, Ohlsson R, Henikoff S . (2006). Nat Rev Genet 7: 21–33.

  • Felsenstein J . (1993). Phylip – Phylogeny Inference Package. Version 3.5. University of Washington: Seattle, WA.

    Google Scholar 

  • Florian S, Sonneck K, Hauswirth AW, Krauth MT, Schernthaner GH, Sperr WR et al. (2006). Leukemia Lymphoma 47: 207–222.

  • Goodman RH, Smolik S . (2000). Genes Dev 14: 1553–1577.

  • Grossman SR . (2001). Eur J Biochem 268: 2773–2778.

  • Hayashida K, Omagari K, Masuda J, Hazama H, Kadokawa Y, Ohba K et al. (2005). Cell Biol Int 29: 472–481.

  • Human Mitochondrial Genome Database http://www.genpat.uu.se/mtDB.

  • Kitabayashi Y, Aikawa LA, Nguyen A, Ohki YM . (2001). EMBO J 20: 7184–7196.

  • Knudson AG . (1996). J Cancer Res Clin Oncol 122: 135–140.

  • Kung AL, Rebel VI, Bronson RT, Ch'ng LE, Sieff CA, Livingston DM et al. (1999). Genes Dev 14: 272–277.

  • Michor F, Iwasa Y, Nowak MA . (2004). Nat Rev Cancer 4: 197–205.

  • MITOMAP (2005). A Human Mitochondrial Genome Database http://www.mitomap.org.

  • Murata T, Kurokawa R, Krones A, Tatsumi K, Ishii M, Taki T et al. (2001). Hum Mol Genet 10: 1071–1076.

  • O'Brien TW, O'Brien BJ, Norman RA . (2005). Gene 354: 147–151.

  • Pakendorf B, Stoneking M . (2005). Ann Rev Genomics Hum Genet 6: 165–183.

  • Palanichamy MG, Sun C, Agrawal S, Bandelt HJ, Kong QP, Khan F et al. (2004). Am J Hum Genet 75: 966–978.

  • Parfait B, Rustin P, Munnich A, Rotig A . (1998). Biochem Biophys Res Commun 247: 57–59.

  • Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M et al. (1995). Nature 376: 348–351.

  • Rieder MJ, Taylor SL, Tobe VO, Nickerson DA . (1998). Nucleic Acids Res 2: 967–973.

  • Schmid M, Steinlein C, Haaf T . (2004). Cytogenet Genome Res 104: 277–282.

  • Shigeno K, Yoshida H, Pana L, Luo JM, Fujisawa S, Naito K et al. (2004). Cancer Lett 213: 11–20.

  • Shin MG, Kajigaya S, McCoy Jr JP, Levin BC, Young N . (2004). Blood 103: 553–561.

  • Sidransky D, Mikkelsen T, Schwechheimer K, Rosenblum ML, Cavanee W, Vogelstein B . (1992). Nature 355: 846–847.

  • Singh KK, Kulawiec M, Still I, Desouki MM, Geradts J, Matsui S . (2005). Gene 354: 140–146.

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. (2003). Cancer Res 63: 5821–5828.

  • van Tilborg AAG, de Vries A, de Bont M, Groenfeld LE, van der Kwast TH, Zwarthoff EC . (2000). Hum Mol Genet 9: 2973–2980.

Download references

Acknowledgements

We thank Dr GC Mishra, Director, National Center for Cell Science (Pune, India) for encouragement and support. This work is funded by the Department of Biotechnology (DBT). Ms N Sharma receives a research fellowship from the Council of Scientific and Industrial Research (CSIR). We also thank Dr CB Koppikar (Jehangir Hospital, Pune, India) and Dr Sanjay Gupte (Gupte Hospital, Pune) for providing the tissue and tumor samples, Mr Sarang Satoor for the backup in DNA sequencing and Mr AM Mali for excellent technical assistance. Statistical analysis was carried out under the kind guidance of Dr AP Gore (Department of Statistics, Pune University, India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Bapat.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wani, A., Sharma, N., Shouche, Y. et al. Nuclear–mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene 25, 6336–6344 (2006). https://doi.org/10.1038/sj.onc.1209649

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209649

Keywords

This article is cited by

Search

Quick links