Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of replication fork progression in low-dose-specific p53-dependent S-phase DNA damage checkpoint

Abstract

The S-phase DNA damage checkpoint is activated by DNA damage to delay DNA synthesis allowing time to resolve the replication block. We previously discovered the p53-dependent S-phase DNA damage checkpoint in mouse zygotes fertilized with irradiated sperm. Here, we report that the same p53 dependency holds in mouse embryonic fibroblasts (MEFs) at low doses of irradiation. DNA synthesis in p53 wild-type (WT) MEFs was suppressed in a biphasic manner in which a sharp decrease below 2.5 Gy was followed by a more moderate decrease up to 10 Gy. In contrast, p53−/− MEFs exhibited radioresistant DNA synthesis below 2.5 Gy whereas the cells retained the moderate suppression above 5 Gy. DNA fiber analysis revealed that 1 Gy irradiation suppressed replication fork progression in p53 WT MEFs, but not in p53−/− MEFs. Proliferating cell nuclear antigen (PCNA), clamp loader of DNA polymerase, was phosphorylated in WT MEFs after 1 Gy irradiation and redistributed to form foci in the nuclei. In contrast, PCNA was not phosphorylated and dissociated from chromatin in 1 Gy-irradiated p53−/− MEFs. These results demonstrate that the novel low-dose-specific p53-dependent S-phase DNA damage checkpoint is likely to regulate the replication fork movement through phosphorylation of PCNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Agarwal ML, Agarwal A, Taylor WR, Chernova O, Sharma Y, Stark GR . (1998). Proc Natl Acad Sci USA 95: 14775–14780.

  • Bakkenist CJ, Kastan MB . (2003). Nature 421: 499–506.

  • Balajee AS, Geard CR . (2001). Nucleic Acids Res 29: 1341–1351.

  • Boddy MN, Russell P . (2001). Curr Biol 11: R953–R956.

  • Bohnke A, Westphal F, Schmidt A, El-Awady RA, Dahm-Daphi J . (2004). Int J Radiat Biol 80: 53–63.

  • Bravo R, Macdonald-Bravo H . (1987). J Cell Biol 105: 1549–1554.

  • Brown KD, Rathi A, Kamath R, Beardsley DI, Zhan Q, Mannino JL et al. (2003). Nat Genet 33: 80–84.

  • Buscemi G, Perego P, Carenini N, Nakanishi M, Chessa L, Chen J et al. (2004). Oncogene 23: 7691–7700.

  • Dimitrova DS, Gilbert DM . (1999). Mol Cell 4: 983–993.

  • Dimitrova DS, Gilbert DM . (2000). Nat Cell Biol 2: 686–694.

  • Elkind MM, Sutton H . (1959). Nature 184: 1293–1295.

  • Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J . (2001). Nature 410: 842–847.

  • Fei P, El-Deiry WS . (2003). Oncogene 22: 5774–5783.

  • Gately DP, Hittle JC, Chan GK, Yen TJ . (1998). Mol Biol Cell 9: 2361–2374.

  • Gottifredi V, Shieh S, Taya Y, Prives C . (2001). Proc Natl Acad Sci USA 98: 1036–1041.

  • Heffernan TP, Simpson DA, Frank AR, Heinloth AN, Paules RS, Cordeiro-Stone M et al. (2002). Mol Cell Biol 22: 8552–8561.

  • Henry-Mowatt J, Jackson D, Masson JY, Johnson PA, Clements PM, Benson FE et al. (2003). Mol Cell 11: 1109–1117.

  • Hu T, Miller CM, Ridder GM, Aardema MJ . (1999). Mutat Res 426: 51–62.

  • Jackson DA, Pombo A . (1998). J Cell Biol 140: 1285–1295.

  • Janz C, Wiesmuller L . (2002). Oncogene 21: 5929–5933.

  • Karmakar P, Balajee AS, Natarajan AT . (2001). Mutagenesis 16: 225–232.

  • Kearsey JM, Shivji MK, Hall PA, Wood RD . (1995). Science 270: 1004–1005; author reply 1005–1006.

  • Kim JM, Nakao K, Nakamura K, Saito I, Katsuki M, Arai K et al. (2002). EMBO J 21: 2168–2179.

  • Laderoute MP . (1996). Anticancer Res 16: 2825–2830.

  • Larner JM, Lee H, Little RD, Dijkwel PA, Schildkraut CL, Hamlin JL . (1999). Nucleic Acids Res 27: 803–809.

  • Leonhardt H, Rahn HP, Weinzierl P, Sporbert A, Cremer T, Zink D et al. (2000). J Cell Biol 149: 271–280.

  • Levine AJ . (1997). Cell 88: 323–331.

  • Ma H, Samarabandu J, Devdhar RS, Acharya R, Cheng PC, Meng C et al. (1998). J Cell Biol 143: 1415–1425.

  • Makino F, Okada S . (1975). Radiat Res 62: 37–51.

  • Merrick CJ, Jackson D, Diffley JF . (2004). J Biol Chem 279: 20067–20075.

  • Miura M, Sasaki T, Takasaki Y . (1996). Radiat Res 145: 75–80.

  • Nayak BK, Das GM . (2002). Oncogene 21: 7226–7229.

  • Osborn AJ, Elledge SJ, Zou L . (2002). Trends Cell Biol 12: 509–516.

  • Painter RB, Young BR . (1975). Radiat Res 64: 648–656.

  • Painter RB, Young BR . (1976). Biochim Biophys Acta 418: 146–153.

  • Painter RB, Young BR . (1980). Proc Natl Acad Sci USA 77: 7315–7317.

  • Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM . (2003). Biochem Cell Biol 81: 123–129.

  • Prosperi E, Stivala LA, Sala E, Scovassi AI, Bianchi L . (1993). Exp Cell Res 205: 320–325.

  • Rowley R, Phillips EN, Schroeder AL . (1999). Int J Radiat Biol 75: 267–283.

  • Santocanale C, Diffley JF . (1998). Nature 395: 615–618.

  • Savio M, Stivala LA, Bianchi L, Vannini V, Prosperi E . (1998). Carcinogenesis 19: 591–596.

  • Sedelnikova OA, Pilch DR, Redon C, Bonner WM . (2003). Cancer Biol Ther 2: 233–235.

  • Sengupta S, Linke SP, Pedeux R, Yang Q, Farnsworth J, Garfield SH et al. (2003). EMBO J 22: 1210–1222.

  • Sengupta S, Robles AI, Linke SP, Sinogeeva NI, Zhang R, Pedeux R et al. (2004). J Cell Biol 166: 801–813.

  • Shimada K, Pasero P, Gasser SM . (2002). Genes Dev 16: 3236–3252.

  • Shimura T, Inoue M, Taga M, Shiraishi K, Uematsu N, Takei N et al. (2002a). Mol Cell Biol 22: 2220–2228.

  • Shimura T, Toyoshima M, Taga M, Shiraishi K, Uematsu N, Inoue M et al. (2002b). Radiat Res 158: 735–742.

  • Shirahige K, Hori Y, Shiraishi K, Yamashita M, Takahashi K, Obuse C et al. (1998). Nature 395: 618–621.

  • Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM et al. (1994). Science 266: 1376–1380.

  • Solomon DA, Cardoso MC, Knudsen ES . (2004). J Cell Biol 166: 455–463.

  • Stelter P, Ulrich HD . (2003). Nature 425: 188–191.

  • Storer RD, Kraynak AR, McKelvey TW, Elia MC, Goodrow TL, DeLuca JG . (1997). Mutat Res 373: 157–165.

  • Toyoshima M, Shimura T, Adiga SK, Taga M, Shiraishi K, Inoue M et al. (2005). Oncogene 24: 3229–3235.

  • Tsurimoto T . (1999). Front Biosci 4: D849–D858.

  • Waga S, Hannon GJ, Beach D, Stillman B . (1994). Nature 369: 574–578.

  • Watanabe I . (1974). Radiat Res 58: 541–556.

  • Xie G, Habbersett RC, Jia Y, Peterson SR, Lehnert BE, Bradbury EM et al. (1998). Oncogene 16: 721–736.

Download references

Acknowledgements

We thank Drs Donald MacPhee, Martin Levin, Yosef Shiloh and Mirit I Aladjem for critical reading of the manuscript. This work was supported by a Grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by a grant from Nuclear Safety Research Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Shimura.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimura, T., Toyoshima, M., Adiga, S. et al. Suppression of replication fork progression in low-dose-specific p53-dependent S-phase DNA damage checkpoint. Oncogene 25, 5921–5932 (2006). https://doi.org/10.1038/sj.onc.1209624

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209624

Keywords

This article is cited by

Search

Quick links