Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays

Abstract

Genomic amplification of oncogenes and inactivation of suppressor genes are critical in the pathogenesis of human cancer. To identify chromosomal alterations associated with hepatocarcinogenesis, we performed allelic gene dosage analysis on 36 hepatocellular carcinomas (HCCs). Data from high-density single-nucleotide polymorphism arrays were analysed using the Genome Imbalance Map (GIM) algorithm, which simultaneously detects DNA copy number alterations and loss of heterozygosity (LOH) events. Genome Imbalance Map analysis identified allelic imbalance regions, including uniparental disomy, and predicted the coexistence of a heterozygous population of cancer cells. We observed that gains of 1q, 5p, 5q, 6p, 7q, 8q, 17q and 20q, and LOH of 1p, 4q, 6q, 8p, 10q, 13q, 16p, 16q and 17p were significantly associated with HCC. On 6q24–25, which contains imprinting gene clusters, we observed reduced levels of PLAGL1 expression owing to loss of the unmethylated allele. Finally, we integrated the copy number data with gene expression intensity, and found that genome dosage is correlated with alteration in gene expression. These observations indicated that high-resolution GIM analysis can accurately determine the localizations of genomic regions with allelic imbalance, and when integrated with epigenetic information, a mechanistic basis for inactivation of a tumor suppressor gene in HCC was elucidated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abdollahi A, Godwin AK, Miller PD, Getts LA, Schultz DC, Taguchi T et al. (1997). Cancer Res 57: 2029–2034.

  • Abdollahi A, Pisarcik D, Roberts D, Weinstein J, Cairns P, Hamilton TC . (2003). J Biol Chem 278: 6041–6049.

  • Benetkiewicz M, Wang Y, Schaner M, Wang P, Mantripragada KK, Buckley PG et al. (2005). Genes Chromosomes Cancer 42: 228–237.

  • Bignell GR, Huang J, Greshock J, Watt S, Butler A, West S et al. (2004). Genome Res 14: 287–295.

  • Boige V, Laurent-Puig P, Fouchet P, Flejou JF, Monges G, Bedossa P et al. (1997). Cancer Res 57: 1986–1990.

  • Buckley PG, Jarbo C, Menzel U, Mathiesen T, Scott C, Gregory SG et al. (2005). Cancer Res 65: 2653–2661.

  • Cvetkovic D, Pisarcik D, Lee C, Hamilton TC, Abdollahi A . (2004). Gynecol Oncol 95: 449–455.

  • Engel E . (1980). Am J Med Genet 6: 137–143.

  • Engel E . (1993). Am J Med Genet 46: 670–674.

  • Grundy P, Wilson B, Telzerow P, Zhou W, Paterson MC . (1994). Am J Hum Genet 54: 282–289.

  • Hashimoto K, Mori N, Tamesa T, Okada T, Kawauchi S, Oga A et al. (2004). Mod Pathol 17: 617–622.

  • Henry I, Bonaiti-Pellie C, Chehensse V, Beldjord C, Schwartz C, Utermann G et al. (1991). Nature 351: 665–667.

  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . (1996). Proc Natl Acad Sci USA 93: 9821–9826.

  • Hoque MO, Lee CC, Cairns P, Schoenberg M, Sidransky D . (2003). Cancer Res 63: 2216–2222.

  • Ishikawa S, Komura D, Tsuji S, Nishimura K, Yamamoto S, Panda B et al. (2005). Biochem Biophys Res Commun 333: 1309–1314.

  • Janne PA, Li C, Zhao X, Girard L, Chen TH, Minna J et al. (2004). Oncogene 23: 2716–2726.

  • Jou YS, Lee CS, Chang YH, Hsiao CF, Chen CF, Chao CC et al. (2004). Cancer Res 64: 3030–3036.

  • Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F et al. (1992). Science 258: 818–821.

  • Kano M, Nishimura K, Ishikawa S, Tsutsumi S, Hirota K, Hirose M et al. (2003). Physiol Genomics 13: 31–46.

  • Katoh H, Shibata T, Kokubu A, Ojima H, Loukopoulos P, Kanai Y et al. (2005). J Hepatol 43: 863–874.

  • Kennedy GC, Matsuzaki H, Dong S, Liu WM, Huang J, Liu G et al. (2003). Nat Biotechnol 21: 1233–1237.

  • Kitayama Y, Igarashi H, Watanabe F, Maruyama Y, Kanamori M, Sugimura H . (2003). Lab Invest 83: 1311–1320.

  • Kondo Y, Kanai Y, Sakamoto M, Mizokami M, Ueda R, Hirohashi S . (2000). Hepatology 32: 970–979.

  • Kusano N, Shiraishi K, Kubo K, Oga A, Okita K, Sasaki K . (1999). Hepatology 29: 1858–1862.

  • Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F et al. (2001). Gastroenterology 120: 1763–1773.

  • Lieberfarb ME, Lin M, Lechpammer M, Li C, Tanenbaum DM, Febbo PG et al. (2003). Cancer Res 63: 4781–4785.

  • Lindblad-Toh K, Tanenbaum DM, Daly MJ, Winchester E, Lui WO, Villapakkam A et al. (2000). Nat Biotechnol 18: 1001–1005.

  • Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M et al. (2003). Genome Res 13: 2291–2305.

  • Malcolm S, Clayton-Smith J, Nichols M, Robb S, Webb T, Armour JA et al. (1991). Lancet 337: 694–697.

  • Mei R, Galipeau PC, Prass C, Berno A, Ghandour G, Patil N et al. (2000). Genome Res 10: 1126–1137.

  • Midorikawa Y, Tsutsumi S, Nishimura K, Kamimura N, Kano M, Sakamoto H et al. (2004). Cancer Res 64: 7263–7270.

  • Midorikawa Y, Tsutsumi S, Taniguchi H, Ishii M, Kobune Y, Kodama T et al. (2002). Jpn J Cancer Res 93: 636–643.

  • Murthy SK, DiFrancesco LM, Ogilvie RT, Demetrick DJ . (2002). Mod Pathol 15: 1241–1250.

  • Nagai H, Pineau P, Tiollais P, Buendia MA, Dejean A . (1997). Oncogene 14: 2927–2933.

  • Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A et al. (2005). Cancer Res 65: 6071–6079.

  • Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M . (1989). Nature 342: 281–285.

  • Niketeghad F, Decker HJ, Caselmann WH, Lund P, Geissler F, Dienes HP et al. (2001). Br J Cancer 85: 697–704.

  • Okabe H, Ikai I, Matsuo K, Satoh S, Momoi H, Kamikawa T et al. (2000). Hepatology 31: 1073–1079.

  • Patil MA, Gutgemann I, Zhang J, Ho C, Cheung ST, Ginzinger D et al. (2005). Carcinogenesis 26: 2050–2057.

  • Piao Z, Park C, Park JH, Kim H . (1998). Int J Cancer 75: 29–33.

  • Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D et al. (1998). Nat Genet 20: 207–211.

  • Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF et al. (1999). Nat Genet 23: 41–46.

  • Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE et al. (2002). Proc Natl Acad Sci USA 99: 12963–12968.

  • Raghavan M, Lillington DM, Skoulakis S, Debernardi S, Chaplin T, Foot NJ et al. (2005). Cancer Res 65: 375–378.

  • Sano T, Kityama Y, Igarashi H, Suzuki M, Tanioka F, Chida K et al. (2006). Pathol Int 56: 117–125.

  • Taguchi T, Jhanwar SC, Siegfried JM, Keller SM, Testa JR . (1993). Cancer Res 53: 4349–4355.

  • Temple IK, James RS, Crolla JA, Sitch FL, Jacobs P, Howell WM et al. (1995). Nat Genet 9: 110–112.

  • Thrash-Bingham CA, Salazar H, Freed JJ, Greenberg RE, Tartof KD . (1995). Cancer Res 55: 6189–6195.

  • Upender MB, Habermann JK, McShane LM, Korn EL, Barrett JC, Difilippantonio MJ et al. (2004). Cancer Res 64: 6941–6949.

  • Varrault A, Ciani E, Apiou F, Bilanges B, Hoffmann A, Pantaloni C et al. (1998). Proc Natl Acad Sci USA 95: 8835–8840.

  • Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R et al. (1998). Science 280: 1077–1082.

  • Weissenbach J, Gyapay G, Dib C, Vignal A, Morissette J, Millasseau P et al. (1992). Nature 359: 794–801.

  • Zhao X, Li C, Paez JG, Chin K, Janne PA, Chen TH et al. (2004). Cancer Res 64: 3060–3071.

Download references

Acknowledgements

We thank Hiroko Meguro, Kunihiro Nishimura, Akira Watanabe, Kimihiro Yamashita, Megumi Ihara and Kiyoko Nagura for valuable technical assistance, and Panda Binaya for helpful discussion. This work was supported in part by a Grant-in-Aid for Scientific Research (S) 16101006 (HA) and (C) 17591378 (YM), Scientific Research on Priority Areas 17015008 (HA) and 17015017 (HS), and Special Coordination Fund for Science and Technology from The Ministry of Education, Science, Sports and Culture, and CREST, JST (HA), Mitsui Life Social Welfare Foundation (YM), Smoking Research Foundation (HS), the Program of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO) and Focus 21 Project of New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Aburatani.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Midorikawa, Y., Yamamoto, S., Ishikawa, S. et al. Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays. Oncogene 25, 5581–5590 (2006). https://doi.org/10.1038/sj.onc.1209537

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209537

Keywords

This article is cited by

Search

Quick links