Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of vimentin by SIP1 in human epithelial breast tumor cells

Abstract

The expression of Smad interacting protein-1 (SIP1; ZEB2) and the de novo expression of vimentin are frequently involved in epithelial-to-mesenchymal transitions (EMTs) under both normal and pathological conditions. In the present study, we investigated the potential role of SIP1 in the regulation of vimentin during the EMT associated with breast tumor cell migration and invasion. Examining several breast tumor cell lines displaying various degrees of invasiveness, we found SIP1 and vimentin expression only in invasive cell lines. Also, using a model of cell migration with human mammary MCF10A cells, we showed that SIP1 is induced specifically in vimentin-positive migratory cells. Furthermore, transfection of SIP1 cDNA in MCF10A cells increased their vimentin expression both at the mRNA and protein levels and enhanced their migratory abilities in Boyden Chamber assays. Inversely, inhibition of SIP1 expression by RNAi strategies in BT-549 cells and MCF10A cells decreased vimentin expression. We also showed that SIP1 transfection did not activate the TOP-FLASH reporter system, suggesting that the β-catenin/TCF pathway is not implicated in the regulation of vimentin by SIP1. Our results therefore implicate SIP1 in the regulation of vimentin observed in the EMT associated with breast tumor cell migration, a pathway that may contribute to the metastatic progression of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bienz M . (2005). Curr Biol 15: R64–R67.

  • Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A . (2003). J Cell Sci 116: 499–511.

  • Brummelkamp TR, Bernards R, Agami R . (2002). Science 296: 550–553.

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). Nat Cell Biol 2: 76–83.

  • Come C, Arnoux V, Bibeau F, Savagner P . (2004). J Mammary Gland Biol Neoplasia 9: 183–193.

  • Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al. (2001). Mol Cell 7: 1267–1278.

  • Duband JL, Monier F, Delannet M, Newgreen D . (1995). Acta Anat (Basel) 154: 63–78.

  • Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T et al. (2000). J Cell Sci 113: 2455–2462.

  • Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, Ingber D et al. (1998). J Cell Sci 111: 1897–1907.

  • Eisaki A, Kuroda H, Fukui A, Asashima M . (2000). Biochem Biophys Res Commun 271: 151–157.

  • Giles RH, van Es JH, Clevers H . (2003). Biochim Biophys Acta 1653: 1–24.

  • Gilles C, Newgreen D, Sato H, Thompson EW . (2004). Rise and Fall of Epithelial Phenotype In: Savagner P (ed). Eurekah.com and Kluwer Academic/Plenum Publishers: New York, (Chapter 2).

    Google Scholar 

  • Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P et al. (2003). Cancer Res 63: 2658–2664.

  • Gilles C, Polette M, Zahm JM, Tournier JM, Volders L, Foidart JM et al. (1999). J Cell Sci 112: 4615–4625.

  • Gilles C, Thompson EW . (1996). Breast J 2: 83–96.

  • Goldman RD, Chou YH, Prahlad V, Yoon M . (1999). FASEB J 13 (Suppl 2): S261–S265.

  • Gonzales M, Weksler B, Tsuruta D, Goldman RD, Yoon KJ, Hopkinson SB et al. (2001). Mol Biol Cell 12: 85–100.

  • Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H et al. (2004). Mutat Res 566: 9–20.

  • Guarino M . (1995). Histol Histopathol 10: 171–184.

  • Hajra KM, Chen DYS, Fearon ER . (2002). Cancer Res 62: 1613–1618.

  • Hecht A, Kemler R . (2000). EMBO Rep 1: 24–28.

  • Helfand BT, Chang L, Goldman RD . (2004). J Cell Sci 117: 133–141.

  • Hendrix MJ, Seftor EA, Chu YW, Trevor KT, Seftor RE . (1996). Cancer Metast Rev 15: 507–525.

  • Hendrix MJ, Seftor EA, Seftor RE, Trevor KT . (1997). Am J Pathol 150: 483–495.

  • Homan SM, Mercurio AM, LaFlamme SE . (1998). J Cell Sci 111: 2717–2728.

  • Ikenouchi J, Matsuda M, Furuse M, Tsukita S . (2003). J Cell Sci 116: 1959–1967.

  • Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al. (1997). Science 275: 1784–1787.

  • Kreis S, Schonfeld HJ, Melchior C, Steiner B, Kieffer N . (2005). Exp Cell Res 305: 110–121.

  • Maeda M, Johnson KR, Wheelock MJ . (2005). J Cell Sci 118: 873–887.

  • Maniotis AJ, Chen CS, Ingber DE . (1997). Proc Natl Acad Sci USA 94: 849–854.

  • Million K, Tournier F, Houcine O, Ancian P, Reichert U, Marano F . (2001). Am J Resp Cell Mol Biol 25: 744–750.

  • Miyoshi A, Kitajima Y, Sumi K, Sato K, Hagiwara A, Koga Y et al. (2004). Br J Cancer 90: 1265–1273.

  • Nawrocki RB, Polette M, Gilles C, Clavel C, Strumane K, Matos M et al. (2001). Int J Cancer 93: 644–652.

  • Nieto MA . (2002). Nat Rev Mol Cell Biol 3: 155–166.

  • Ohkubo T, Ozawa M . (2004). J Cell Sci 117: 1675–1685.

  • Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW . (1997). J Biol Chem 272: 24735–24738.

  • Peinado H, Portillo F, Cano A . (2004). Int J Dev Biol 48: 365–375.

  • Ramaekers FC, Haag D, Kant A, Moesker O, Jap PH, Vooijs GP . (1983). Proc Natl Acad Sci USA 80: 2618–2622.

  • Remacle JE, Kraft H, Lerchner W, Wuytens G, Collart C, Verschueren K et al. (1999). EMBO J 18: 5073–5084.

  • Savagner P . (2001). BioEssays 23: 912–923.

  • Savagner P, Yamada KM, Thiery JP . (1997). J Cell Biol 137: 1403–1419.

  • Singh S, Sadacharan S, Su S, Belldegrun A, Persad S, Singh G . (2003). Cancer Res 63: 2306–2311.

  • Sommers CL, Byers SW, Thompson EW, Torri JA, Gelmann EP . (1994). Breast Cancer Res Treat 31: 325–335.

  • Staal FJ, Noort MM, Strous GJ, Clevers HC . (2002). EMBO Rep 3: 63–68.

  • Steinert PM, Roop DR . (1988). Annu Rev Biochem 57: 593–625.

  • Svitkina TM, Verkhovsky AB, Borisy GG . (1996). J Cell Biol 135: 991–1007.

  • Thiery JP . (2002). Nat Rev Cancer 2: 442–454.

  • Thompson EW, Paik S, Brunner N, Sommers CL, Zugmaier G, Clarke R et al. (1992). J Cell Physiol 150: 534–544.

  • Tsuruta D, Jones JC . (2003). J Cell Sci 116: 4977–4984.

  • Tucker RP . (2004). Int J Biochem Cell Biol 36: 173–177.

  • Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A et al. (2004). Nucleic Acids Res 32: 936–948.

  • Van Aken E, De Wever O, Correia da Rocha AS, Mareel M . (2001). Virchows Arch 439: 725–751.

  • Van de Putte T, Maruhashi M, Francis A, Nelles L, Kondoh H, Huylebroeck D et al. (2003). Am J Hum Genet 72: 465–470.

  • Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H et al. (2005). Nucleic Acids Res 33: 6566–6578.

  • van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J et al. (1997). Cell 88: 789–799.

  • van Grunsven LA, Michiels C, Van de Putte T, Nelles L, Wuytens G, Verschueren K et al. (2003). J Biol Chem 278: 26135–26145.

  • van Grunsven LA, Papin C, Avalosse B, Opdecamp K, Huylebroeck D, Smith JC et al. (2000). Mech Dev 94: 189–193.

  • Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P et al. (1999). J Biol Chem 274: 20489–20498.

  • Wiznerowicz M, Trono D . (2003). J Virol 77: 8957–8961.

  • Wu AL, Wang J, Zheleznyak A, Brown EJ . (1999). Mol Cell 4: 619–625.

  • Yokoyama K, Kamata N, Fujimoto R, Tsutsumi S, Tomonari M, Taki M et al. (2003). Int J Oncol 22: 891–898.

Download references

Acknowledgements

We thank Dr H Clevers for the TOP-FLASH, the FOP-FLASH and TCF-4 expression vector and Dr K Orford and Dr S Byers for the β-catenin expression vector. This work was supported by grants from the ‘Communauté française de Belgique (Actions de Recherches Concertées)’, the Commission of European Communities (European Union Framework Programs 5 and 6, BRECOSM), the ‘Fonds de la Recherche Scientifique Médicale’, the ‘Fonds National de la Recherche Scientifique’ (FNRS, Belgium), the ‘Fédération Belge Contre le Cancer’, the ‘coopération C.G.R.I.-F.N.R.S.-INSERM’, the ‘Fonds spéciaux de la Recherche (University of Liège), the ‘Centre Anticancéreux près l'Université de Liège’, the Fortis Banque Assurances, the ‘Fondation Léon Fredericq’ (University of Liège), the D.G.T.R.E. from the ‘Région Wallonne’, the ‘Fonds d'Investissements de la Recherche Scientifique (CHU, Liège, Belgium)’, the Interuniversity Attraction Poles Program – Belgian Science Policy (Brussels, Belgium). CG is a Research Associate from the FNRS (Belgium), SB is an FRIA grant holder from the F.N.R.S., MM is a Research Fellow from the F.N.R.S, and GB is a postdoctoral researcher with the FWO (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Gilles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bindels, S., Mestdagt, M., Vandewalle, C. et al. Regulation of vimentin by SIP1 in human epithelial breast tumor cells. Oncogene 25, 4975–4985 (2006). https://doi.org/10.1038/sj.onc.1209511

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209511

Keywords

This article is cited by

Search

Quick links