Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

TIMP-2 upregulates RECK expression via dephosphorylation of paxillin tyrosine residues 31 and 118

Abstract

We previously demonstrated that TIMP-2 increases the association of Crk with C3G and via subsequent activation of Rap1 enhances the expression of RECK, a membrane-anchored MMP inhibitor. In the present study, we investigate the mechanism of how the TIMP-2 signal is transduced from the α3β1 integrin receptor to the Crk-C3G-Rap1 molecular complex. TIMP-2 treatment of human microvascular endothelial cells (hMVECs) increased the phosphorylation levels of Src at Tyr-527, the negative regulatory site, through enhanced association of Src with Csk. This results in the reduction of Src kinase activity and dephosphorylation of paxillin at Tyr-31/118, the target sites for Src kinase phosphorylation and also the binding sites for the downstream effector Crk. Such TIMP-2 effects accompany the disassembly of paxillin-Crk-DOCK180 molecular complex and, in turn, Rac1 inactivation. On the contrary, levels of paxillin-Crk-C3G complex formation are not reduced, rather slightly increased, which is consistent with our previous finding. Therefore, TIMP-2-mediated inhibition of Src kinase activity leads to the signaling switch from Rac1 to Rap1, thereby leading to enhanced RECK expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ahn SM, Jeong SJ, Kim YS, Sohn Y, Moon A . (2004). Cancer Lett 207: 49–57.

  • Baker AH, Edwards DR, Murphy G . (2002). J Cell Sci 115: 3719–3727.

  • Baumeister U, Funke R, Ebnet K, Vorschmitt H, Koch S, Vestweber D . (2005). EMBO J 24: 1686–1695.

  • Bos JL . (2005). Curr Opin Cell Biol 17: 123–128.

  • Chen HY, Shen CH, Tsai YT, Lin FC, Huang YP, Chen RH . (2004). Mol Cell Biol 24: 10558–10572.

  • Feller SM . (2001). Oncogene 20: 6348–6371.

  • Furumoto K, Arii S, Mori A, Furuyama H, Gorrin Rivas MJ, Nakao T et al. (2001). Hepatology 33: 189–195.

  • Harrison SC . (2003). Cell 112: 737–740.

  • Hood JD, Cheresh DA . (2002). Nature Rev Cancer 2: 91–100.

  • Jiang Y, Goldberg ID, Shi YE . (2002). Oncogene 21: 2245–2252.

  • Masui T, Doi R, Koshiba T, Fujimoto K, Tsuji S, Nakajima S et al. (2003). Clin Cancer Res 9: 1779–1784.

  • Nakamura K, Yano H, Uchida H, Hashimoto S, Schaefer E, Sabe H . (2000). J Biol Chem 275: 27155–27164.

  • Oh J, Seo DW, Diaz T, Wei B, Ward Y, Ray JM et al. (2004). Cancer Res 64: 9062–9069.

  • Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM et al. (2001). Cell 107: 789–800.

  • Ohba Y, Ikuta K, Ogura A, Matsuda J, Mochizuki N, Nagashima K et al. (2001). EMBO J 20: 3333–3341.

  • Parsons JT . (2003). J Cell Sci 116: 1409–1416.

  • Perez-Martinez L, Jaworski DM . (2005). J Neurosci 25: 4917–4929.

  • Petit V, Boyer B, Lentz D, Turner CE, Thiery JP, Valles AM . (2000). J Cell Biol 148: 957–970.

  • Playford MP, Schaller MD . (2004). Oncogene 23: 7928–7946.

  • Ren Y, Meng S, Mei L, Zhao ZJ, Jove R, Wu J . (2004). J Biol Chem 279: 8497–8505.

  • Richardson A, Malik RK, Hildebrand JD, Parsons JT . (1997). Mol Cell Biol 17: 6906–6914.

  • Roskoski R . (2005). Biochem Biophys Res Commun 331: 1–14.

  • Sasahara RM, Brochado SM, Takahashi C, Oh J, Maria-Engler SS, Granjeiro JM et al. (2002). Cancer Detect Prev 26: 435–443.

  • Schaller MD . (2001). Oncogene 20: 6459–6472.

  • Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R et al. (2003). Cell 114: 171–180.

  • Span PN, Sweep CG, Manders P, Beex LV, Leppert D, Linderg RL . (2003). Cancer 97: 2710–2715.

  • Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K et al. (1998). Proc Natl Acad Sci USA 95: 13221–13226.

  • Takenaka K, Ishikawa S, Kawano Y, Yanagihara K, Miyahara R, Otake Y et al. (2004). Eur J Cancer 40: 1617–1623.

  • Takenaka K, Ishikawa S, Yanagihara K, Miyahara R, Hasegawa S, Otake Y et al. (2005). Ann Surg Oncol 12: 817–824.

  • Thomas SM, Soriano P, Imamoto A . (1995). Nature 376: 267–271.

  • Turner CE . (2000). Nature Cell Biol 2: E231–E236.

  • Valles AM, Beuvin M, Boyer B . (2004). J Biol Chem 279: 44490–44496.

  • van der Jagt MF, Sweep FC, Waas ET, Hendriks T, Ruers TJ, Merry AH et al. (2005). Cancer Lett, on line publication.

  • Wingfield PT, Sax JK, Stahl SJ, Kaufman J, Palmer I, Chung V et al. (1999). J Biol Chem 274: 21362–21368.

  • Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T et al. (2004). Mol Cell 13: 341–355.

Download references

Acknowledgements

We thank Hisataka Sabe (Osaka Bioscience Institute, Japan) for pBabe paxillin and pBabe paxillin (2X). This work was supported by intramural research funds from the National Cancer Institute, Center for Cancer Research (Project # Z01SC 009179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, J., Diaz, T., Wei, B. et al. TIMP-2 upregulates RECK expression via dephosphorylation of paxillin tyrosine residues 31 and 118. Oncogene 25, 4230–4234 (2006). https://doi.org/10.1038/sj.onc.1209444

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209444

Keywords

This article is cited by

Search

Quick links