Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stability of p21Waf1/Cip1 CDK inhibitor protein is responsive to RhoA-mediated regulation of the actin cytoskeleton

Abstract

The proto-oncogene Ras GTPase stimulates transcription of p21Waf1/Cip1 (p21), which is repressed by the RhoA GTPase. We previously showed that Ras also elevates p21 protein levels by reducing its proteasome-mediated degradation. Therefore, we investigated whether RhoA also influenced p21 protein degradation. Pulse-chase analysis of p21 protein stability revealed that inhibitors of Rho function, which disrupt filamentous actin (F-actin), drastically slowed p21 degradation. Direct F-actin disruption mimicked Rho inhibition to stabilize p21. We found that Rho inhibition, or F-actin disruption, activated the JNK stress-activated protein kinase, and that interfering with JNK signalling, but not p38, abrogated p21 stabilization by Rho inhibition or F-actin-disrupting drugs. In addition, Ras-transformation led to increased constitutive JNK activity that contributed to the elevated p21 protein levels. These data suggest that p21 stability is influenced by a mechanism that monitors F-actin downstream of Rho, and which acts through a pathway involving activation of JNK. These results may have significant implications for therapies that target Rho-signalling pathways to induce p21-mediated cell-cycle arrest.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  • Adnane J, Bizouarn FA, Qian Y, Hamilton AD, Sebti SM . (1998). Mol Cell Biol 18: 6962–6970.

  • Aktories K, Mohr C, Koch G . (1992). Curr Top Microbiol Immunol 175: 115–131.

  • Assoian RK, Zhu X . (1997). Curr Opin Cell Biol 9: 93–98.

  • Beltman J, Erickson JR, Martin GA, Lyons JF, Cook SJ . (1999). J Biol Chem 274: 3772–3780.

  • Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, Leisten JC et al. (2001). Proc Natl Acad Sci USA 98: 13681–13686.

  • Bergo MO, Gavino BJ, Hong C, Beigneux AP, McMahon M, Casey PJ et al. (2004). J Clin Invest 113: 539–550.

  • Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM . (2004). Genes Dev 18: 862–876.

  • Bohmer RM, Scharf E, Assoian RK . (1996). Mol Biol Cell 7: 101–111.

  • Bottazzi ME, Zhu X, Bohmer RM, Assoian RK . (1999). J Cell Biol 146: 1255–1264.

  • Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM . (1989). EMBO J 8: 1087–1092.

  • Coleman ML, Marshall CJ, Olson MF . (2003). EMBO J 22: 2036–2046.

  • Coleman ML, Marshall CJ, Olson MF . (2004). Nat Rev Mol Cell Biol 5: 355–366.

  • Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF . (2001). Nat Cell Biol 3: 339–345.

  • Danesh FR, Sadeghi MM, Amro N, Philips C, Zeng L, Lin S et al. (2002). Proc Natl Acad Sci USA 99: 8301–8305.

  • Denoyelle C, Albanese P, Uzan G, Hong L, Vannier JP, Soria J et al. (2003). Cell Signal 15: 327–338.

  • Denoyelle C, Vasse M, Korner M, Mishal Z, Ganne F, Vannier JP et al. (2001). Carcinogenesis 22: 1139–1148.

  • Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T et al. (1994). Cell 76: 1025–1037.

  • Escote X, Zapater M, Clotet J, Posas F . (2004). Nat Cell Biol 6: 997–1002.

  • Fang F, Orend G, Watanabe N, Hunter T, Ruoslahti E . (1996). Science 271: 499–502.

  • Fuchs SY, Fried VA, Ronai Z . (1998). Oncogene 17: 1483–1490.

  • Han S, Sidell N, Roman J . (2005). Cancer Lett 219: 71–81.

  • Harrison JC, Bardes ES, Ohya Y, Lew DJ . (2001). Nat Cell Biol 3: 417–420.

  • Hill CS, Wynne J, Treisman R . (1995). Cell 81: 1159–1170.

  • Huang S, Ingber DE . (2002). Exp Cell Res 275: 255–264.

  • Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S . (1999). Nat Med 5: 221–225.

  • Kim GY, Mercer SE, Ewton DZ, Yan Z, Jin K, Friedman E . (2002). J Biol Chem 277: 29792–29802.

  • Lee S, Helfman DM . (2004). J Biol Chem 279: 1885–1891.

  • Lew DJ . (2003). Curr Opin Cell Biol 15: 648–653.

  • Liberto M, Cobrinik D, Minden A . (2002). Oncogene 21: 1590–1599.

  • Lloyd AC, Obermuller F, Staddon S, Barth CF, McMahon M, Land H . (1997). Genes Dev 11: 663–677.

  • McCarthy SA, Samuels ML, Pritchard CA, Abraham JA, McMahon M . (1995). Genes Dev 9: 1953–1964.

  • Meier R, Rouse J, Cuenda A, Nebreda AR, Cohen P . (1996). Eur J Biochem 236: 796–805.

  • Muda M, Theodosiou A, Rodrigues N, Boschert U, Camps M, Gillieron C et al. (1996). J Biol Chem 271: 27205–27208.

  • Olson MF, Ashworth A, Hall A . (1995). Science 269: 1270–1272.

  • Olson MF, Paterson HF, Marshall CJ . (1998). Nature 394: 295–299.

  • Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A . (1990). J Cell Biol 111: 1001–1007.

  • Pumiglia KM, Decker SJ . (1997). Proc Natl Acad Sci USA 94: 448–452.

  • Qiu RG, Chen J, McCormick F, Symons M . (1995). Proc Natl Acad Sci USA 92: 11781–11785.

  • Ren XD, Kiosses WB, Schwartz MA . (1999). EMBO J 18: 578–585.

  • Reshetnikova G, Barkan R, Popov B, Nikolsky N, Chang LS . (2000). Exp Cell Res 259: 35–53.

  • Ridley AJ, Hall A . (1992). Cell 70: 389–399.

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A . (1992). Cell 70: 401–410.

  • Riento K, Ridley AJ . (2003). Nat Rev Mol Cell Biol 4: 446–456.

  • Sahai E, Marshall CJ . (2002). Nat Rev Cancer 2: 133–142.

  • Sahai E, Olson MF, Marshall CJ . (2001). EMBO J 20: 755–766.

  • Sampath P, Pollard TD . (1991). Biochemistry 30: 1973–1980.

  • Sanchez I, Hughes RT, Mayer BJ, Yee K, Woodgett JR, Avruch J et al. (1994). Nature 372: 794–798.

  • Spector I, Shochet NR, Kashman Y, Groweiss A . (1983). Science 219: 493–495.

  • Subbaramaiah K, Hart JC, Norton L, Dannenberg AJ . (2000). J Biol Chem 275: 14838–14845.

  • Tanaka H, Yamashita T, Asada M, Mizutani S, Yoshikawa H, Tohyama M . (2002). J Cell Biol 158: 321–329.

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T et al. (1997). Nature 389: 990–994.

  • Walker K, Olson MF . (2005). Curr Opin Genet Dev 15: 62–68.

  • Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M . (1997). Mol Cell Biol 17: 5598–5611.

  • Yokoo T, Toyoshima H, Miura M, Wang Y, Iida KT, Suzuki H et al. (2003). J Biol Chem 278: 52919–52923.

  • Yujiri T, Fanger GR, Garrington TP, Schlesinger TK, Gibson S, Johnson GL . (1999). J Biol Chem 274: 12605–12610.

  • Zhu X, Ohtsubo M, Bohmer RM, Roberts JM, Assoian RK . (1996). J Cell Biol 133: 391–403.

Download references

Acknowledgements

We thank S. Sebti (University of South Florida, Tampa, Florida) for the gift of GGTI-298. This study was supported by Cancer Research UK and a National Cancer Institute grant R01 CA030721 to M. Olson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M F Olson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coleman, M., Densham, R., Croft, D. et al. Stability of p21Waf1/Cip1 CDK inhibitor protein is responsive to RhoA-mediated regulation of the actin cytoskeleton. Oncogene 25, 2708–2716 (2006). https://doi.org/10.1038/sj.onc.1209322

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209322

Keywords

  • signal transduction
  • cellular
  • molecular and tumour biology
  • guanine nucleotide binding proteins and effectors

This article is cited by

Search

Quick links