Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effects of permeability transition inhibition and decrease in cytochrome c content on doxorubicin toxicity in K562 cells

Abstract

As mitochondria play a key role in the commitment to cell death, we have investigated the mitochondrial consequences of resistance to doxorubicin (DOX) in K562 cells. We found that the permeability transition pore (PTP) inhibitor cyclosporine A (CsA) failed to inhibit PTP opening in the resistant clone. Moreover, the Ca2+ loading capacity in the resistant clone was identical to that observed in the parent cells in the presence of CsA, suggesting that the PTP was already inhibited in a CsA-like manner in the resistant cells. In agreement with this proposal, the mitochondrial target of CsA cyclophilin D (CyD) decreased by half in the resistant cells. The levels of adenine nucleotide translocator, voltage anion-dependent channel, Bax, Bcl-2, Bcl-xL, AIF and Smac/Diablo, were similar in both cell lines, whereas cytochrome c content was divided by three in the resistant cells. Since P-glycoprotein inhibition did not restore DOX toxicity in the resistant cells, while DOX-induced cell death in the parent cells was prevented by either PTP inhibition or siRNA-induced decrease in cytochrome c content, we conclude that the inhibition of PTP opening and the decrease in cytochrome c content participate in the mechanism that makes K562 cells resistant to DOX.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

DOX:

doxorubicin

P-gp:

P-glycoprotein

ROS:

reactive oxygen species

PTP:

permeability transition pore

EGTA:

ethylene glycol-bis(β-aminoethyl ether) N,N,N′,N′-tetraacetic acid

MOPS:

4-morpholinepropanesulfonic acid

CsA:

cyclosporine A

CyD:

cyclophilin D

VDAC:

voltage anion-dependent channel

ANT:

adenine nucleotide translocator

References

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA et al. (2005). Nature 434: 658–662.

  • Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P . (2005). J Biol Chem 280: 18558–18561.

  • Campone M, Vavasseur F, Le Cabellec MT, Meflah K, Vallette FM, Oliver L . (2001). Leukemia 15: 1377–1387.

  • Chauvin C, De Oliveira F, Ronot X, Mousseau M, Leverve X, Fontaine E . (2001). J Biol Chem 276: 41394–41398.

  • Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C . (2002). Cancer Res 62: 4592–4598.

  • Connern CP, Halestrap AP . (1996). Biochemistry 35: 8172–8180.

  • Cory S, Adams JM . (2002). Nat Rev Cancer 2: 647–656.

  • Crompton M, Virji S, Ward JM . (1998). Biochem Soc Trans 26: S330.

  • Decaudin D, Geley S, Hirsch T, Castedo M, Marchetti P, Macho A et al. (1997). Cancer Res 57: 62–67.

  • Denis-Gay M, Petit JM, Mazat JP, Ratinaud MH . (1998). Biochem Pharmacol 56: 451–457.

  • Desagher S, Martinou JC . (2000). Trends Cell Biol 10: 369–377.

  • Fukushima T, Yamashita T, Takemura H, Suto H, Kishi S, Urasaki Y et al. (2000). Leuk Res 24: 249–254.

  • Galat A, Metcalfe SM . (1995). Prog Biophys Mol Biol 63: 67–118.

  • Gamen S, Anel A, Perez-Galan P, Lasierra P, Johnson D, Pineiro A et al. (2000). Exp Cell Res 258: 223–235.

  • Gauchez AS, Lunardi J, Pernin C, Marti-Battle D, Fagret D . (2001). In vivo 15: 101–104.

  • Gewirtz DA . (1999). Biochem Pharmacol 57: 727–741.

  • Grandjean F, Bremaud L, Robert J, Ratinaud MH . (2002). Biochem Pharmacol 63: 823–831.

  • Green DR, Kroemer G . (2004). Science 305: 626–629.

  • Green PS, Leeuwenburgh C . (2002). Biochim Biophys Acta 1588: 94–101.

  • Huigsloot M, Tijdens IB, Mulder GJ, van de Water B . (2002). J Biol Chem 277: 35869–35879.

  • Jung K, Reszka R . (2001). Adv Drug Deliv Rev 49: 87–105.

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP et al. (2004). Nature 427: 461–465.

  • Kowaltowski AJ, Vercesi AE, Fiskum G . (2000). Cell Death Differ 7: 903–910.

  • Li Y, Johnson N, Capano M, Edwards M, Crompton M . (2004). Biochem J 383: 101–109.

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X . (1996). Cell 86: 147–157.

  • Mankhetkorn S, Garnier-Suillerot A . (1998). Eur J Pharmacol 343: 313–321.

  • Murphy AN, Bredesen DE, Cortopassi G, Wang E, Fiskum G . (1996). Proc Natl Acad Sci USA 93: 9893–9898.

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H et al. (2005). Nature 434: 652–658.

  • Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P . (1996). J Biol Chem 271: 2185–2192.

  • Nielsen D, Maare C, Skovsgaard T . (1996). Gen Pharmacol 27: 251–255.

  • Nogueira V, Devin A, Walter L, Rigoulet M, Leverve X, Fontaine E . (2005). J Bioenerg Biomembr 37: 25–33.

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. (2005). Nature 435: 677–681.

  • Petronilli V, Miotto G, Canton M, Colonna R, Bernardi P, Di Lisa F . (1999). Biophys J 76: 725–734.

  • Ravagnan L, Roumier T, Kroemer G . (2002). J Cell Physiol 192: 131–137.

  • Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J et al. (2005). Proc Natl Acad Sci USA 102: 12005–12010.

  • Seelig A . (1998). Eur J Biochem 251: 252–261.

  • Serafino A, Sinibaldi-Vallebona P, Lazzarino G, Tavazzi B, Di Pierro D, Rasi G et al. (2000). Anticancer Res 20: 3383–3394.

  • Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW . (1998). Proc Natl Acad Sci USA 95: 7024–7029.

  • Solem LE, Heller LJ, Wallace KB . (1996). J Mol Cell Cardiol 28: 1023–1032.

  • Trindade GS, Capella MA, Capella LS, Affonso-Mitidieri OR, Rumjanek VM . (1999). Photochem Photobiol 69: 694–699.

  • Woodfield K, Ruck A, Brdiczka D, Halestrap AP . (1998). Biochem J 336 (Part 2): 287–290.

Download references

Acknowledgements

We thank Isabelle Pignot-Paintrand for expert assistance with electron microscopy, Claude Cochet, Odile Filhol-Cochet and Yan Burelle for helpful discussions and Dan Veale for correcting the manuscript. This work was supported by Grants from INSERM, the Ministère de l’Enseignement de la Recherche et de la Technologie (MERT), the Association pour la Recherche sur le Cancer, the Association Espoir, AGARO, GEFLUC (Dauphiné Savoie) and by an Aventis Fellowship (to FDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Fontaine.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Oliveira, F., Chauvin, C., Ronot, X. et al. Effects of permeability transition inhibition and decrease in cytochrome c content on doxorubicin toxicity in K562 cells. Oncogene 25, 2646–2655 (2006). https://doi.org/10.1038/sj.onc.1209293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209293

Keywords

This article is cited by

Search

Quick links