Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Granulocyte colony-stimulating factor-induced upregulation of Jak3 transcription during granulocytic differentiation is mediated by the cooperative action of Sp1 and Stat3

Abstract

We previously demonstrated that Jak3 is a primary response gene for G-CSF and ectopic overexpression of Jak3 can accelerate granulocytic differentiation of normal mouse bone marrow cells induced by G-CSF and GM-CSF. To gain insight into the regulation of G-CSF-induced transcription of Jak3, we constructed deletion and linker scanning mutants of the Jak3 promoter sequences and performed luciferase reporter assays in the murine myeloid cell line 32Dcl3, with and without G-CSF stimulation. These experiments showed that mutation of a −67 to −85 element, which contained a putative Sp1 binding site, or mutation of a −44 to −53 GAS element resulted in a marked reduction of Jak3 promoter activity. Electrophoretic mobility shift assays revealed that Sp1 and Stat3 present in nuclear lysates of 32Dcl3 cells stimulated with G-CSF can bind to the −67 to −85 element and −44 to −53 GAS element, respectively. In addition, cotransfection of a constitutively active mutant of Stat3 along with a Jak3 promoter/luciferase reporter resulted in enhanced Jak3 promoter activity. Together, these results demonstrate that activation of Jak3 transcription during G-CSF- induced granulocytic differentiation is mediated by the combined action of Sp1 and Stat3, a mechanism also shown to be important in IL-6-induced monocytic differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Aringer M, Hofmann SR, Frucht DM, Chen M, Centola M, Morinobu A et al. (2003). J Immunol 170: 6057–6064.

  • Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell AG, Albanese C et al. (1999). Cell 98: 295–303.

  • Cantwell CA, Sterneck E, Johnson PF . (1998). Mol Cell Biol 18: 2108–2117.

  • Chakraborty A, Tweardy DJ . (1998). Leuk Lymphoma 30: 433–442.

  • Chen HM, Pahl HL, Scheibe RJ, Zhang DE, Tenen DG . (1993). J Biol Chem 268: 8230–8239.

  • de Koning JP, Soede-Bobok AA, Ward AC, Schelen AM, Antonissen C, van Leeuwen D et al. (2000). Oncogene 19: 3290–3298.

  • Garriga J, Limon A, Mayol X, Rane SG, Albrecht JH, Reddy EP et al. (1998). Biochem J 333: 645–654.

  • Grossman WJ, Verbsky JW, Yang L, Berg LJ, Fields LE, Chaplin DD et al. (1999). Blood 94: 932–939.

  • Hauses M, Tönjes RR, Grez M . (1998). J Biol Chem 273: 31844–31852.

  • Heydemann A, Juang G, Hennessy K, Parmacek MS, Simon MC . (1996). Mol Cell Biol 16: 1676–1686.

  • Horvath CM, Wen Z, Darnell Jr JE . (1995). Genes Dev 9: 984–994.

  • Ihle JN . (1996). Cell 84: 331–334.

  • Kao WY, Briggs JA, Kinney MC, Jensen RA, Briggs RC . (1997). J Cell Biochem 65: 231–244.

  • Khanna-Gupta A, Zibello T, Simkevich C, Rosmarin AG, Berliner N . (2000). Blood 95: 3734–3741.

  • Kishimoto T, Taga T, Akira S . (1994). Cell 76: 253–262.

  • Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW . (2002). Gene 285: 1–24.

  • Kumar A, Reddy EP . (2001). Gene 270: 221–229.

  • Look DC, Pelletier MR, Tidwell RM, Roswit WT, Holtzman MJ . (1995). J Biol Chem 270: 30264–30267.

  • Mangan JK, Rane SG, Kang AD, Amanullah A, Wong BC, Reddy EP . (2004). Blood 103: 4093–4101.

  • Martino A, Holmes IV JH, Lord JD, Moon JJ, Nelson BH . (2001). J Immunol 166: 1723–1729.

  • McLemore ML, Grewal S, Liu F, Archambault A, Poursine-Laurent J, Haug J et al. (2001). Immunity 14: 193–204.

  • Nelson BH, Willerford DM . (1998). Adv Immunol 70: 1–81.

  • Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP et al. (1995). Science 270: 800–802.

  • Noti JD, Reinemann BC, Petrus MN . (1996). Mol Cell Biol 16: 2940–2950.

  • Nuchprayoon I, Shang J, Simkevich CP, Luo M, Rosmarin AG, Friedman AD . (1999). J Biol Chem 274: 1085–1091.

  • Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S et al. (1998). Cell 93: 385–395.

  • Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N et al. (1995). Immunity 3: 771–782.

  • Patel G, Kreider B, Rovera G, Reddy EP . (1993). Mol Cell Biol 13: 2269–2276.

  • Piedrafita FJ, Molander RB, Vansant G, Orlova EA, Pfahl M, Reynolds WF . (1996). J Biol Chem 271: 14412–14420.

  • Rane SG, Mangan JK, Amanullah A, Wong BC, Vora RK, Liebermann DA et al. (2002). Blood 100: 2753–2762.

  • Rane SG, Reddy EP . (2000). Oncogene 19: 5662–5679.

  • Rane SG, Reddy EP . (2002). Oncogene 21: 3334–3358.

  • Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD et al. (1998). Cell 93: 373–383.

  • Rosmarin AG, Luo M, Caprio DG, Shang J, Simkevich CP . (1998). J Biol Chem 273: 13097–13103.

  • Rovera G, Valtieri M, Mavilio F, Reddy EP . (1987). Oncogene 1: 29–35.

  • Saffer JD, Jackson SP, Annarella MB . (1991). Mol Cell Biol 11: 2189–2199.

  • Sjin RM, Lord KA, Abdollahi A, Hoffman B, Liebermann DA . (1999). J Biol Chem 274: 28697–28707.

  • Stahl N, Yancopoulos GD . (1993). Cell 74: 587–590.

  • Thomis DC, Gurniak CB, Tivol E, Sharpe AH, Berg LJ . (1995). Science 270: 794–797.

  • Tomita K, Saijo K, Yamasaki S, Iida T, Nakatsu F, Arase H et al. (2001). J Biol Chem 276: 25378–25385.

  • Valtieri M, Tweardy D, Caracciolo D, Johnson K, Mavilio F, Altmann S et al. (1987). J Immunol 138: 3829–3835.

  • Xu X, Sun YL, Hoey T . (1996). Science 273: 794–797.

  • Yu B, Datta PK, Bagchi S . (2003). Nucleic Acids Res 31: 5368–5376.

  • Zaret KS, Liu J, DiPersio CM . (1990). PNAS 87: 5469–5473.

  • Zhang DE, Hetherington CJ, Tan S, Dziennis SE, Gonzalez DA, Chen HM et al. (1994). J Biol Chem 269: 11425–11434.

Download references

Acknowledgements

We thank Dr Atul Kumar for obtaining the genomic clone of the Jak3 promoter. We thank Dr Anita L Korapati for construction of the Stat3-C mutant and establishment of the 32Dcl3/Stat3-C cell line. This research was supported by grants CA68239, CA79086, ES09225, and R24 CA88261 from the National Institutes of Health to EPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E P Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangan, J., Tantravahi, R., Rane, S. et al. Granulocyte colony-stimulating factor-induced upregulation of Jak3 transcription during granulocytic differentiation is mediated by the cooperative action of Sp1 and Stat3. Oncogene 25, 2489–2499 (2006). https://doi.org/10.1038/sj.onc.1209280

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209280

Keywords

This article is cited by

Search

Quick links