Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma

Abstract

Esophageal adenocarcinoma (EA) is characterized by a poor prognosis making the identification of clinically targetable proteins essential for improving patient outcome. We report the involvement of multiple alterations of the MET pathway in EA development and progression. Microarray analysis of Barrett's metaplasia, dysplasia, and EA revealed overexpression of the MET oncogene in EAs but only those with MET gene amplification. STS-amplification mapping revealed that the boundary of the MET amplicon in these EAs is defined by fragile site FRA7G. We also identified an amplicon at 11p13 that resulted in amplification and overexpression of CD44, a gene involved in MET autophosphorylation upon HGF stimulation. Tissue microarrays with phospho-MET-specific antibodies demonstrated a uniformly high abundance of MET activation in primary EA and cells metastatic to lymph nodes but to a lesser extent in a subset of metaplastic and dysplastic Barrett's samples. Increased expression of multiple genes in the MET pathway associated with invasive growth, for example, many MMPs and osteopontin, also was found in EAs. Treatment of EA-derived cell lines with geldanamycin, an inhibitor for tyrosine kinases including MET receptor kinase, reduced cell migration and induced EA cell apoptosis. The data indicate that upregulation of the MET pathway may contribute to the poor outcome of EA patients and that therapeutic agents targeting this pathway may help improve patient survival.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Arlt MF, Casper AM, Glover TW . (2003). Cytogenet Genome Res 100: 92–100.

  • Barrett MT, Sanchez CA, Prevo LJ, Wong DJ, Galipeau PC, Paulson TG et al. (1999). Nat Genet 22: 106–109.

  • Blagosklonny MV . (2002). Leukemia 16: 455–462.

  • Blount PL, Meltzer SJ, Yin J, Huang Y, Krasna MJ, Reid BJ . (1993). Proc Natl Acad Sci USA 90: 3221–3225.

  • Briggs J, Chamboredon S, Castellazzi M, Kerry JA, Bos TJ . (2002). Oncogene 21: 7077–7091.

  • Cao B, Su Y, Oskarsson M, Zhao P, Kort EJ, Fisher RJ et al. (2001). Proc Natl Acad Sci USA 98: 7443–7448.

  • Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P et al. (2003). Cancer Res 63: 7345–7355.

  • Ciullo M, Debily MA, Rozier L, Autiero M, Billault A, Mayau V et al. (2002). Hum Mol Genet 11: 2887–2894.

  • Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM et al. (1984). Nature 311: 29–33.

  • Coquelle A, Pipiras E, Toledo F, Buttin G, Debatisse M . (1997). Cell 89: 215–225.

  • Devesa SS, Blot WJ, Fraumeni JF . (1998). Cancer 83: 2049–2053.

  • Eliceiri BP . (2001). Circ Res 89: 1104–1110.

  • Farrow DC, Vaughan TL . (1996). Cancer Causes Control 7: 322–327.

  • Ferracini R, Longati P, Naldini L, Vigna E, Comoglio PM . (1991). J Biol Chem 256: 19558–19564.

  • Fukuda Y, Kurihara N, Imoto I, Yasui K, Yoshida M, Yanagihara K et al. (2000). Genes Chromosomes Cancer 29: 315–324.

  • Gonzalez MV, Artimez ML, Rodrigo L, Lopez-Larrea C, Menendez MJ, Alvarez V et al. (1997). J Clin Pathol 50: 212–217.

  • Guo W, Giancotti FG . (2004). Nat Rev Mol Cell Biol 5: 816–826.

  • Hellman A, Zlotorynski E, Scherer SW, Cheung J, Vincent JB, Smith DI et al. (2002). Cancer Cell 1: 89–97.

  • Huang H, Qian C, Jenkins RB, Smith DI . (1998). Genes Chromosomes Cancer 21: 152–159.

  • Hughes SJ, Glover TW, Zhu XX, Kuick R, Thoraval D, Orringer MB et al. (1998). Proc Natl Acad Sci USA 95: 12410–12415.

  • Hughes SJ, Nambu Y, Soldes OS, Hamstra D, Rehemtulla A, Iannettoni MD et al. (1997). Cancer Res 57: 5571–5578.

  • Hynes RO . (2002). Cell 110: 673–687.

  • Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T et al. (1997). Proc Natl Acad Sci USA 94: 11445–11450.

  • Kim SJ, Johnson M, Koterba K, Herynk MH, Uehara H, Gallick GE . (2003). Clin Cancer Res 9: 5161–5170.

  • Kong-Beltran M, Stamos J, Wickramasinghe D . (2004). Cancer Cell 6: 75–84.

  • Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S et al. (1998). Nat Med 4: 844–847.

  • Lin L, Aggarwal S, Glover TW, Orringer MB, Hanash S, Beer DG . (2000a). Cancer Res 60: 1341–1347.

  • Lin L, Miller CT, Contreras JI, Prescott MS, Dagenais SL, Wu R et al. (2002). Cancer Res 62: 5273–5279.

  • Lin L, Prescott MS, Zhu Z, Singh P, Chun SY, Kuick RD et al. (2000b). Cancer Res 60: 1341–1347.

  • Lin J, Lin L, Thomas DG, Greenson JK, Giordano TJ, Robinson GS et al. (2004). Clin Cancer Res 10: 5708–5716.

  • Matsuyama A, Shiraishi T, Trapasso F, Kuroki T, Alder H, Mori M et al. (2003). Proc Natl Acad Sci USA 100: 14988–14993.

  • Michieli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L et al. (2004). Cancer Cell 6: 61–73.

  • Miller CT, Aggarwal S, Lin TK, Dagenais SL, Contreras JI, Orringer MB et al. (2003a). Cancer Res 63: 4136–4143.

  • Miller CT, Moy JR, Lin L, Schipper M, Normolle D, Brenner DE et al. (2003b). Clin Cancer Res 9: 4819–4825.

  • Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C et al. (1991). EMBO J 10: 2857–2878.

  • Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H . (2002). Genes Dev 16: 3074–3086.

  • Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY et al. (2001). Mol Cell 8: 995–1004.

  • Recio JA, Merlino G . (2003). Cancer Res 63: 1576–1582.

  • Rodrigues GA, Park M . (1993). Mol Cell Biol 11: 6711–6722.

  • Rosenberg C, Geelen E, Ijszenga MJ, Pearson P, Tanke HJ, Dinjens WN et al. (2002). Cancer Genet Cytogenet 135: 35–41.

  • Sage EH, Reed M, Funk SE, Truong T, Steadele M, Puolakkainen P et al. (2003). J Biol Chem 278: 37849–37857.

  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP . (1997). Cell 89: 239–250.

  • Trusolino L, Comoglio PM . (2002). Nat Rev Cancer 2: 289–300.

  • Weber GF . (2001). Biochim Biophys Acta 1552: 61–85.

  • Weber GF, Bronson RT, Ilagan J, Cantor H, Schmits R, Mak TW . (2002). Cancer Res 62: 2281–2286.

  • Wong DJ, Barrett MT, Stoger R, Emond MJ, Reid BJ . (1997). Cancer Res 57: 2619–2622.

  • Zhang YW, Graveel C, Shinomiya N, Vande Woude GF . (2004). Cancer Cell 6: 5–6.

  • Zhang YW, Vande Woude GF . (2003). J Cell Biochem 88: 408–417.

Download references

Acknowledgements

This work was supported by National Cancer Institute Grants CA71606 (DG Beer) and CA43222 (TW Glover).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D G Beer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, C., Lin, L., Casper, A. et al. Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene 25, 409–418 (2006). https://doi.org/10.1038/sj.onc.1209057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209057

Keywords

This article is cited by

Search

Quick links