Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

PI3K-AKT pathway negatively controls EGFR-dependent DNA-binding activity of Stat3 in glioblastoma multiforme cells

Abstract

Glioblastoma multiforme (GBM) cells frequently harbor amplification and/or gain-of-function mutation of the EGFR gene leading to the activation of multiple signaling pathways. Blockade of EGFR activation inhibited the activation of both AKT and Stat3 in U87 and D54 GBM cells and induced spontaneous apoptosis, which were associated with reduction in the steady-state level of Mcl-1. Surprisingly, inhibition of PI3 kinase (PI3K) activity, which in turn inhibited AKT activation, significantly increased the DNA-binding activity of Stat3 in U87 and D54 cells. This was not due to an increase in the level of tyrosine-phosphorylated Stat3. Conversely, ectopic expression of constitutively activated AKT significantly decreased the DNA-binding activity of Stat3 in 293T cells. Interestingly, blockade of protein phosphatase 2A activity in GBM or 293T cells by calyculin A, which activated AKT, stabilized the phosphorylation of multiple Ser/Thr residues that were located in the transactivation domain (TAD) of Stat3 and this in turn completely ablated the DNA-binding activity of Stat3. Collectively, these results suggest that both Stat3 and AKT provide survival signals in U87 and D54 cells, and Ser/Thr phosphorylation of Stat3-TAD by the PI3K-AKT pathway negatively controls the DNA-binding function of Stat3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aldape KD, Ballman K, Furth A, Buckner JC, Giannini C, Burger PC, Scheithauer BW, Jenkins RB and James CD . (2004). J. Neuropathol. Exp. Neurol., 63, 700–707.

  • Andjelkovic M, Jakubowicz T, Cron P, Ming XF, Han JW and Hemmings BA . (1996). Proc. Natl. Acad. Sci. USA, 93, 5699–5704.

  • Ballif BA and Blenis J . (2001). Cell Growth Differ., 12, 397–408.

  • Brivanlou AH and Darnell Jr JE . (2002). Science, 295, 813–818.

  • Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C and Darnell Jr JE . (1999). Cell, 98, 295–303.

  • Burgering BM and Coffer PJ . (1995). Nature, 376, 599–602.

  • Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS and Jove R . (1999). Immunity, 10, 105–115.

  • Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell Jr JE and Kuriyan J . (1998). Cell, 93, 827–839.

  • Datta SR, Brunet A and Greenberg ME . (1999). Genes Dev., 13, 2905–2927.

  • Decker T and Kovarik P . (2000). Oncogene, 19, 2628–2637.

  • DiDonato JA . (2000). Methods Enzymol., 322, 393–400.

  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF and Collins VP . (1991). Cancer Res., 51, 2164–2172.

  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA and Trzaskos JM . (1998). J. Biol. Chem., 273, 18623–18632.

  • Fry DW, Kraker AJ, McMichael A, Ambroso LA, Nelson JM, Leopold WR, Connors RW and Bridges AJ . (1994). Science, 265, 1093–1095.

  • Fukuchi K, Watanabe H, Tomoyasu S, Ichimura S, Tatsumi K and Gomi K . (2000). Biochim. Biophys. Acta, 1496, 207–220.

  • Ghosh MK and Harter ML . (2003). Mol. Cell, 12, 255–260.

  • Goswami S, Gupta A and Sharma SK . (1998). J. Neurochem., 71, 1837–1845.

  • Grandis JR, Drenning SD, Zeng Q, Watkins SC, Melhem MF, Endo S, Johnson DE, Huang L, He Y and Kim JD . (2000). Proc. Natl. Acad. Sci. USA, 97, 4227–4232.

  • Green DR and Evan GI . (2002). Cancer Cell, 1, 19–30.

  • Hanahan D and Weinberg RA . (2000). Cell, 100, 57–70.

  • Haque SJ, Harbor PC and Williams BR . (2000). J. Biol. Chem., 275, 26500–26506.

  • Haque SJ, Wu Q, Kammer W, Friedrich K, Smith JM, Kerr IM, Stark GR and Williams BR . (1997). Proc. Natl. Acad. Sci. USA, 94, 8563–8568.

  • Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G and Schaper F . (2003). Biochem. J., 374, 1–20.

  • Holland EC . (2000). Proc. Natl. Acad. Sci. USA, 97, 6242–6244.

  • Kaptein A, Paillard V and Saunders M . (1996). J. Biol. Chem., 271, 5961–5964.

  • Kortylewski M, Feld F, Kruger KD, Bahrenberg G, Roth RA, Joost HG, Heinrich PC, Behrmann I and Barthel A . (2003). J. Biol. Chem., 278, 5242–5249.

  • Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK and DePinho RA . (2001). Genes Dev., 15, 1311–1333.

  • Maiti NR, Sharma P, Harbor PC and Haque SJ . (2005). J. Interferon Cytokine Res. (in press).

  • Meier R, Thelen M and Hemmings BA . (1998). EMBO J., 17, 7294–7303.

  • Pieper AA, Verma A, Zhang J and Snyder SH . (1999). Trends Pharmacol. Sci., 20, 171–181.

  • Rahaman SO, Harbor PC, Chernova O, Barnett GH, Vogelbaum MA and Haque SJ . (2002). Oncogene, 21, 8404–8413.

  • Rahaman SO, Vogelbaum MA and Haque SJ . (2005). Cancer Res., 65, 2956–2963.

  • Rao JS . (2003). Nat. Rev. Cancer, 3, 489–501.

  • Rasheed BK, Wiltshire RN, Bigner SH and Bigner DD . (1999). Curr. Opin. Oncol., 11, 162–167.

  • Resjo S, Goransson O, Harndahl L, Zolnierowicz S, Manganiello V and Degerman E . (2002). Cell Signal., 14, 231–238.

  • Rolhion C, Penault-Llorca F, Kemeny JL, Lemaire JJ, Jullien C, Labit-Bouvier C, Finat-Duclos F and Verrelle P . (2001). J. Neurosurg., 94, 97–101.

  • Singh SK, Clarke ID, Hide T and Dirks PB . (2004a). Oncogene, 23, 7267–7273.

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB . (2004b). Nature, 432, 396–401.

  • Sonoda Y, Watanabe S, Matsumoto Y, Aizu-Yokota E and Kasahara T . (1999). J. Biol. Chem., 274, 10566–10570.

  • Tchirkov A, Rolhion C, Bertrand S, Dore JF, Dubost JJ and Verrelle P . (2001). Br. J. Cancer, 85, 518–522.

  • Van Meir E, Sawamura Y, Diserens AC, Hamou MF and de Tribolet N . (1990). Cancer Res., 50, 6683–6688.

  • Wagner BJ, Hayes TE, Hoban CJ and Cochran BH . (1990). EMBO J., 9, 4477–4484.

  • Wechsler-Reya R and Scott MP . (2001). Annu. Rev. Neurosci., 24, 385–428.

  • Weissenberger J, Loeffler S, Kappeler A, Kopf M, Lukes A, Afanasieva TA, Aguzzi A and Weis J . (2004). Oncogene, 23, 3308–3316.

  • Wen Z, Zhong Z and Darnell Jr JE . (1995). Cell, 82, 241–250.

  • Woetmann A, Nielsen M, Christensen ST, Brockdorff J, Kaltoft K, Engel AM, Skov S, Brender C, Geisler C, Svejgaard A, Rygaard J, Leick V and Odum N . (1999). Proc. Natl. Acad. Sci. USA, 96, 10620–10625.

  • Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR and Vogelstein B . (1987). Proc. Natl. Acad. Sci. USA, 84, 6899–6903.

  • Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS and Vogelstein B . (1992). Proc. Natl. Acad. Sci. USA, 89, 2965–2969.

  • Wu Y, Chen L, Cao L, Sheng W and Yang BB . (2004). J. Cell Sci., 117, 2227–2237.

  • Yonezawa K, Yoshino KI, Tokunaga C and Hara K . (2004). Curr. Top Microbiol. Immunol., 279, 271–282.

  • Zhong Z, Wen Z and Darnell Jr JE . (1994). Proc. Natl. Acad. Sci. USA, 91, 4806–4810.

  • Zhu Y and Parada LF . (2002). Nat. Rev. Cancer, 2, 616–626.

Download references

Acknowledgements

We thank Drs Bryan Williams, Michael Volgelbaum and Marian Harter for helpful discussions and Drs Robert Arceci and Julian Downward for providing the expression constructs of constitutively active Stat3 and AKT, respectively. This work was supported by Grants R01-CA095006 and R01-GM60533 from National Institutes of Health and Funding from the Brain Tumor Institute of Cleveland Clinic Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Jaharul Haque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, M., Sharma, P., Harbor, P. et al. PI3K-AKT pathway negatively controls EGFR-dependent DNA-binding activity of Stat3 in glioblastoma multiforme cells. Oncogene 24, 7290–7300 (2005). https://doi.org/10.1038/sj.onc.1208894

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208894

Keywords

This article is cited by

Search

Quick links