Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis


Gadd45a, gadd45b and gadd45g (Gadd45/MyD118/CR6) are genes that are rapidly induced by genotoxic stress. However, the exact function of Gadd45 proteins in the response of mammalian cells to genotoxic stress is unclear. Here, advantage was taken of gadd45a- and gadd45b-deficient mice to determine the role gadd45a and gadd45b play in the response of bone marrow (BM) cells to genotoxic stress. BM cells from gadd45a- and gadd45b-deficient mice were observed to be more sensitive to ultraviolet radiation chemotherapy (UVC), VP-16 and daunorubicin (DNR)-induced apoptosis compared to wild-type (wt) cells. The increased apoptosis in gadd45a- and gadd45b-deficient cells was evident also by enhanced activation of caspase-3 and poly-ADP-ribose polymerase cleavage and decreased expression of c-inhibitor of apoptotic protein-1, Bcl-2, Bcl-xL compared to wt cells. Reintroduction of gadd45 into gadd45-deficient BM cells restored the wt apoptotic phenotype. Both gadd45a- and gadd45b-deficient BM cells also displayed defective G2/M arrest following exposure to UVC and VP-16, but not to DNR, indicating the existence of different G2/M checkpoints that are either dependent or independent of gadd45. Taken together, these findings identify gadd45a and gadd45b as antiapoptotic genes that increase the survival of hematopoietic cells following exposure to UV radiation and certain anticancer drugs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  • Azam N, Vairapandi M, Zhang W, Hoffman B and Liebermann DA . (2001). J. Biol. Chem., 276, 2766–2774.

  • Balliet AG, Hollander MC, Fornace Jr AJ, Hoffman B and Liebermann DA . (2001). DNA Cell Biol., 20, 239–247.

  • Beadling C, Johnson KW and Smith KA . (1993). Proc. Natl. Acad. Sci. USA, 90, 2719–2723.

  • Fornace Jr AJ, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J and Holbrook NJ . (1989). Mol. Cell. Biol., 9, 4196–4203.

  • Guillouf C, Grana X, Selvakumaran M, De Luca A, Giordano A, Hoffman B and Liebermann DA . (1995). Blood, 85, 2691–2698.

  • Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, Shehee R, Molinaro TA, Kim KE, Tolosa E, Ashwell JD, Rosenberg MP, Zhan Q, Fernandez-Salguero PM, Morgan WF, Deng CX and Fornace Jr AJ . (1999). Nat. Genet., 23, 176.

  • Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B and Fornace Jr AJ . (1992). Cell, 274, 29592–29599.

  • Krishnaraju K, Hoffman B and Liebermann DA . (2001). Blood, 97, 1298–1305.

  • Maeda T, Hanna AN, Sim AB, Chua PP, Chong MT and Tron VA . (2002). J. Invest. Dermatol., 119, 22–26.

  • Papathanasiou MA, Kerr NC, Robbins JH, McBride OW, Alamo Jr I, Barrett SF, Hickson ID and Fornace Jr AJ . (1991). Mol. Cell. Biol., 11, 1009–1016.

  • Selvakumaran M, Lin HK, Miyashita T, Wang HG, Krajewski S, Reed JC, Hoffman B and Liebermann D . (1994a). Oncogene, 9, 1791–1798.

  • Selvakumaran M, Lin HK, Sjin RT, Reed JC, Liebermann DA and Hoffman B . (1994b). Mol. Cell. Biol., 14, 2352–2360.

  • Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O'Connor PM and Fornace Jr AJ . (1994). Science, 266, 1376–1380.

  • Smith ML, Ford JM, Hollander MC, Bortnick RA, Amundson SA, Seo YR, Deng CX, Hanawalt PC and Fornace Jr AJ . (2000). Mol. Cell. Biol., 20, 3705–3774.

  • Takekawa M and Saito H . (1998). Cell, 95, 521–530.

  • Vairapandi M, Azam N, Balliet AG, Hoffman B and Liebermann DA . (2000). J. Biol. Chem., 275, 16810–16819.

  • Vairapandi M, Balliet AG, Fornace Jr AJ, Hoffman B and Liebermann DA . (1996). Oncogene, 12, 2579–2594.

  • Vairapandi M, Balliet AG, Hoffman B and Liebermann DA . (2002). J. Cell. Physiol., 192, 327–338.

  • Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, Hollander MC, O'Connor PM, Fornace Jr AJ and Harris CC . (1999). Proc. Natl. Acad. Sci. USA, 96, 3706–3711.

  • Yang J, Zhu H, Murphy TL, Ouyang W and Murphy KM . (2001). Nat. Immunol., 2, 157–164.

  • Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace Jr AJ, Liebermann DA, Bottinger EP and Roberts AB . (2003). J. Biol. Chem., 278, 43001–43007.

  • Zazzeroni F, Papa S, Algeciras-Schimnich A, Alvarez K, Melis T, Bubici C, Majewski N, Hay N, De Smaele E, Peter ME and Franzoso G . (2003). Blood, 102, 3270–3279.

  • Zerbini LF, Wang Y, Czibere A, Correa RG, Cho JY, Ijiri K, Wei W, Joseph M, Gu X, Grall F, Goldring MB, Zhou JR and Libermann TA . (2004). Proc. Natl. Acad. Sci. USA, 101, 13618–13623.

  • Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC and Fornace Jr AJ . (1999). Oncogene, 18, 2892–2900.

  • Zhan Q, Lord KA, Alamo Jr I, Hollander MC, Carrier F, Ron D, Kohn KW, Hoffman B, Liebermann DA and Fornace Jr AJ . (1994). Mol. Cell. Biol., 14, 2361–2371.

  • Zhang W, Bae I, Krishnaraju K, Azam N, Fan W, Smith K, Hoffman B and Liebermann DA . (1999). Oncogene, 18, 4899–4907.

  • Zhang W, Hoffman B and Liebermann DA . (2001). Int. J. Oncol., 18, 749–757.

Download references


We thank Ms Diana Vesely (graduate student) for construction of MIGW-gadd45a retroviral construct. This work was supported by NIH grants 5 RO1 CA89718-02 (DAL) and RO1 HL 70530-01 (DAL).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dan A Liebermann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, M., Gupta, S., Balliet, A. et al. Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 24, 7170–7179 (2005).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • gadd45-deficient mice
  • apoptosis
  • hematopoietic cells
  • genotoxic stress
  • DNA damage

Further reading


Quick links