Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Gains and overexpression identify DEK and E2F3 as targets of chromosome 6p gains in retinoblastoma

Abstract

The paediatric eye tumour retinoblastoma is initiated by inactivation of RB1, a tumour suppressor on chromosome 13q. In addition to RB1 loss, many retinoblastomas show other genetic alterations including gains on chromosomes 6p21–pter and 1q31–q32. Recently, the minimal region of gains on chromosome 6 was narrowed to band p22. We examined genomic gains and expression changes in primary retinoblastomas to identify potential target genes in 6p22. Quantitative multiplex PCR detected copy numbers 3 in 25 (33%) tumours and no gains in 31 of 76 (40%) tumours. The remaining 20 (26%) samples showed gains only at some loci, most often including E2F3 and DEK in 6p22.3. Analysis of RNA from 21 primary retinoblastomas showed that expression levels of these and some other genes in 6p22 correspond to DNA gains. However, KIF 13A, a reported candidate oncogene on 6p, was expressed at low levels or absent. Clinical manifestation of tumours with gains at all 6p22 loci was distinct in that distribution of age at diagnosis was markedly shifted to older age compared to tumours with no or partial gains. In summary, our results suggest that DEK and E2F3 are potential targets of 6p gains in retinoblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Baugh LR, Hill AA, Brown EL and Hunter CP . (2001). Nucleic Acids Res., 29, E29.

  • Boonstra R, Koning A, Mastik M, van den Berg A and Poppema S . (2003). Virchows Arch., 443, 164–169.

  • Cano J, Oliveros O and Yunis E . (1994). Cancer Genet. Cytogenet., 76, 112–115.

  • Casas S, Nagy B, Elonen E, Aventin A, Larramendy ML, Sierra J, Ruutu T and Knuutila S . (2003). Leuk. Lymphoma, 44, 1935–1941.

  • Chen D, Gallie BL and Squire JA . (2001). Cancer Genet. Cytogenet., 129, 57–63.

  • Chen D, Pajovic S, Duckett A, Brown VD, Squire JA and Gallie BL . (2002). Cancer Res., 62, 967–971.

  • Classon M and Harlow E . (2002). Nat. Rev. Cancer, 2, 910–917.

  • Feber A, Clark J, Goodwin G, Dodson AR, Smith PH, Fletcher A, Edwards S, Flohr P, Falconer A, Roe T, Kovacs G, Dennis N, Fisher C, Wooster R, Huddart R, Foster CS and Cooper CS . (2004). Oncogene, 23, 1627–1630.

  • Fletcher O, Easton D, Anderson K, Gilham C, Jay M and Peto J . (2004). J. Natl. Cancer Inst., 96, 357–363.

  • Foster CS, Falconer A, Dodson AR, Norman AR, Dennis N, Fletcher A, Southgate C, Dowe A, Dearnaley D, Jhavar S, Eeles R, Feber A and Cooper CS . (2004). Oncogene, 23, 5871–5879.

  • Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM and Dryja TP . (1986). Nature, 323, 643–646.

  • Gallie BL, Campbell C, Devlin H, Duckett A and Squire JA . (1999). Cancer Res., 59, 1731s–1735s.

  • Ginsberg D . (2004). Dev. Cell, 6, 742–743.

  • Herzog S, Lohmann DR, Buiting K, Schuler A, Horsthemke B, Rehder H and Rieder H . (2001). Hum. Genet., 108, 98–104.

  • Hoglund M, Gisselsson D, Hansen GB, White VA, Sall T, Mitelman F and Horsman D . (2004). Int. J. Cancer, 108, 57–65.

  • Horsthemke B . (1992). Cancer Genet. Cytogenet., 63, 1–7.

  • Hui R, Campbell DH, Lee CS, McCaul K, Horsfall DJ, Musgrove EA, Daly RJ, Seshadri R and Sutherland RL . (1997). Oncogene, 15, 1617–1623.

  • Kappes F, Damoc C, Knippers R, Przybylski M, Pinna LA and Gruss C . (2004a). Mol. Cell. Biol., 24, 6011–6020.

  • Kappes F, Scholten I, Richter N, Gruss C and Waldmann T . (2004b). Mol. Cell. Biol., 24, 6000–6010.

  • Koon N, Zaika A, Moskaluk CA, Frierson HF, Knuutila S, Powell SM and El-Rifai W . (2004). Neoplasia, 6, 143–149.

  • Lau CC, Harris CP, Lu XY, Perlaky L, Gogineni S, Chintagumpala M, Hicks J, Johnson ME, Davino NA, Huvos AG, Meyers PA, Healy JH, Gorlick R and Rao PH . (2004). Genes Chromosomes Cancer, 39, 11–21.

  • Mairal A, Pinglier E, Gilbert E, Peter M, Validire P, Desjardins L, Doz F, Aurias A and Couturier J . (2000). Genes Chromosomes Cancer, 28, 370–379.

  • Micci F, Walter CU, Teixeira MR, Panagopoulos I, Bjerkehagen B, Saeter G and Heim S . (2003). Cancer Genet. Cytogenet., 144, 119–124.

  • Mittnacht S . (2005). Eur. J. Cell Biol., 84, 97–107.

  • Nakagawa T, Tanaka Y, Matsuoka E, Kondo S, Okada Y, Noda Y, Kanai Y and Hirokawa N . (1997). Proc. Natl. Acad. Sci. USA, 94, 9654–9659.

  • Oeggerli M, Tomovska S, Schraml P, Calvano-Forte D, Schafroth S, Simon R, Gasser T, Mihatsch MJ and Sauter G . (2004). Oncogene, 23, 5616–5623.

  • Parisi T, Pollice A, Di Cristofano A, Calabro V and La Mantia G . (2002). Biochem. Biophys. Res. Commun., 291, 1138–1145.

  • Partheen K, Levan K, Osterberg L, Helou K and Horvath G . (2004). Genes Chromosomes Cancer, 40, 342–348.

  • Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS and Collins VP . (1994). Cancer Res., 54, 4299–4303.

  • Saavedra HI, Wu L, de Bruin A, Timmers C, Rosol TJ, Weinstein M, Robinson ML and Leone G . (2002). Cell Growth Differ., 13, 215–225.

  • Sakowicz R, Finer JT, Beraud C, Crompton A, Lewis E, Fritsch A, Lee Y, Mak J, Moody R, Turincio R, Chabala JC, Gonzales P, Roth S, Weitman S and Wood KW . (2004). Cancer Res., 64, 3276–3280.

  • Sitwala KV, Mor-Vaknin N and Markovitz DM . (2003). Anticancer Res., 23, 2155–2158.

  • Squire J, Gallie BL and Phillips RA . (1985). Hum. Genet., 70, 291–301.

  • Squire J, Phillips RA, Boyce S, Godbout R, Rogers B and Gallie BL . (1984). Hum. Genet., 66, 46–53.

  • van der Wal JE, Hermsen MA, Gille HJ, Schouten-Van Meeteren NY, Moll AC, Imhof SM, Meijer GA, Baak JP and van der Valk P . (2003). J. Clin. Pathol., 56, 26–30.

  • Vogel F . (1979). Hum. Genet., 52, 1–54.

  • von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Buijs A and Grosveld G . (1992). Mol. Cell. Biol., 12, 1687–1697.

Download references

Acknowledgements

We thank Claudia Gruss for providing DEK antibody and recombinant HIS-DEK. We thank Kathy Astrahantseff for critical reading of the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Klinische Forschergruppe Ophthalmologische Onkologie und Genetik KFO 109, Lo 530/6-1 and Ri 1123/1-1), Nationales Genomforschungsnetz (NGFN), the IFORES program of the Medizinische Fakultät der Universität Duisburg-Essen, and the Kulturstiftung Essen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar R Lohmann.

Additional information

This work was presented in part at the AACR 95th annual meeting, March 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasemann, C., Gratias, S., Stephan, H. et al. Gains and overexpression identify DEK and E2F3 as targets of chromosome 6p gains in retinoblastoma. Oncogene 24, 6441–6449 (2005). https://doi.org/10.1038/sj.onc.1208792

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208792

Keywords

This article is cited by

Search

Quick links