Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

New insights into cell cycle control from the Drosophila endocycle

Abstract

During metazoan development, the organization of the cell cycle is often modified in response to developmental signals. The endocycle provides a dramatic example of this phenomenon. In the endocycle, also referred to as the endoreplicative cycle, cells undergo successive rounds of DNA replication without an intervening mitosis. Often the endocycle is used to expand the genome of a group of specialized cells that are highly biosynthetically active. In these circumstances, large polyploid cells are produced in organisms that are primarily comprised of diploid cells. However, many organisms achieve growth by increasing cell size, rather than cell number. This strategy is more generally exploited in insects and plants. For instance, in the insect Drosophila melanogaster, the majority of the larval tissues, as well as many adult tissues, enter the endocycle and become polyploid. Therefore, Drosophila has been a rich source for studies on endocycle regulation. Recent work from Drosophila is beginning to reveal how developmental signals promote the transition from the mitotic cycle to the endocycle, as well as what drives endocycle progression. In addition, studies on the endocycle have provided insight into the regulatory principles underlying the once per cell cycle replication of the genome, as well as the relationship between S phase and mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aggarwal BD and Calvi BR . (2004). Nature, 430, 372–376.

  • Artavanis-Tsakonas S, Rand MD and Lake RJ . (1999). Science, 284, 770–776.

  • Balls M and Billett FS . (1973). British Society for Developmental Biology Symposium.

  • Bartek J, Lukas C and Lukas J . (2004). Nat. Rev. Mol. Cell. Biol., 5, 792–804.

  • Beall EL, Manak JR, Zhou S, Bell M, Lipsick JS and Botchan MR . (2002). Nature, 420, 833–837.

  • Bell SP and Dutta A . (2002). Annu. Rev. Biochem., 71, 333–374.

  • Belyaeva ES, Zhimulev IF, Volkova EI, Alekseyenko AA, Moshkin YM and Koryakov DE . (1998). Proc. Natl. Acad. Sci. USA, 95, 7532–7537.

  • Bosco G, Du W and Orr-Weaver TL . (2001). Nat. Cell Biol., 3, 289–295.

  • Britton JS and Edgar BA . (1998). Development, 125, 2149–2158.

  • Britton JS, Lockwood WK, Li L, Cohen SM and Edgar BA . (2002). Dev. Cell, 2, 239–249.

  • Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R and Hafen E . (2001). Curr. Biol., 11, 213–221.

  • Caldwell MC and Datta S . (1998). Mech. Dev., 79, 121–130.

  • Calvi BR, Lilly MA and Spradling AC . (1998). Genes Dev., 12, 734–744.

  • Clurman BE, Sheaff RJ, Thress K, Groudine M and Roberts JM . (1996). Genes Dev., 10, 1979–1990.

  • Coverley D, Laman H and Laskey RA . (2002). Nat. Cell Biol., 4, 523–528.

  • Datar SA, Jacobs HW, de la Cruz AF, Lehner CF and Edgar BA . (2000). EMBO J., 19, 4543–4554.

  • de Cuevas M, Lilly MA and Spradling AC . (1997). Annu. Rev. Genet., 31, 405–428.

  • de Nooij JC, Graber KH and Hariharan IK . (2000). Mech. Dev., 97, 73–83.

  • de Nooij JC, Letendre MA and Hariharan IK . (1996). Cell, 87, 1237–1247.

  • DeGregori J . (2002). Biochim. Biophys. Acta, 1602, 131–150.

  • Dej KJ and Spradling AC . (1999). Development, 126, 293–303.

  • Deng WM, Althauser C and Ruohola-Baker H . (2001). Development, 128, 4737–4746.

  • Diffley JF, Bousset K, Labib K, Noton EA, Santocanale C and Tercero JA . (2000). Cold Spring Harb. Symp. Quant. Biol., 65, 333–342.

  • Doronkin S, Djagaeva I and Beckendorf SK . (2003). Dev. Cell, 4, 699–710.

  • Drummond-Barbosa D and Spradling AC . (2001). Dev. Biol., 231, 265–278.

  • Duronio RJ, Bonnette PC and O’Farrell PH . (1998). Mol. Cell. Biol., 18, 141–151.

  • Duronio RJ and O’Farrell PH . (1995). Genes Dev., 9, 1456–1468.

  • Duronio RJ, O’Farrell PH, Xie JE, Brook A and Dyson N . (1995). Genes Dev., 9, 1445–1455.

  • Edgar BA . (1999). Nat. Cell Biol., 1, E191–E193.

  • Edgar BA and Orr-Weaver TL . (2001). Cell, 105, 297–306.

  • Emmerich J, Meyer CA, de la Cruz AF, Edgar BA and Lehner CF . (2004). Genetics, 168, 867–875.

  • Follette PJ, Duronio RJ and O’Farrell PH . (1998). Curr. Biol., 8, 235–238.

  • Frei C and Edgar BA . (2004). Dev. Cell, 6, 241–251.

  • Gall JG, Cohen EH and Polan ML . (1971). Chromosoma, 33, 319–344.

  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H and Sicinski P . (2003). Cell, 114, 431–443.

  • Grewal SS and Saucedo LJ . (2004). Dev. Cell, 7, 148–150.

  • Hafen E and Stocker H . (2003). PLoS Biol., 1, E86.

  • Hammond MP and Laird CD . (1985a). Chromosoma, 91, 267–278.

  • Hammond MP and Laird CD . (1985b). Chromosoma, 91, 279–286.

  • Hartwell LH and Weinert TA . (1989). Science, 246, 629–634.

  • Hattori N, Davies TC, Anson-Cartwright L and Cross JC . (2000). Mol. Cell. Biol., 11, 1037–1045.

  • Hayashi S . (1996). Development, 122, 1051–1058.

  • Hong A, Lee-Kong S, Iida T, Sugimura I and Lilly MA . (2003). Development, 130, 1235–1242.

  • Jacobs HW, Knoblich JA and Lehner CF . (1998). Genes Dev., 12, 3741–3751.

  • Jacobs HW, Richter DO, Venkatesh TR and Lehner CF . (2002). Curr. Biol., 12, 1411–1435.

  • Jaklevic BR and Su TT . (2004). Curr. Biol., 14, 23–32.

  • Johnston LA and Gallant P . (2002). Bioessays, 24, 54–64.

  • Johnston LA, Prober DA, Edgar BA, Eisenman RN and Gallant P . (1999). Cell, 98, 779–790.

  • Kashevsky H, Wallace JA, Reed BH, Lai C, Hayashhi-Hagihara A and Orr-Weaver TL . (2002). Proc. Natl. Acad. Sci. USA, 99, 11217–11222.

  • Kawamura K, Shibata T, Saget O, Peel D and Bryant PJ . (1999). Development, 126, 211–219.

  • King RC and Burnett RG . (1959). Science, 129, 1674–1675.

  • Knoblich JA, Sauer K, Jones L, Richardson H, Saint R and Lehner CF . (1994). Cell, 77, 107–120.

  • Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW and Elledge SJ . (2001). Science, 294, 173–177.

  • Korenjak M, Taylor-Harding B, Binne UK, Satterlee JS, Stevaux O, Aasland R, White-Cooper H, Dyson N and Brehm A . (2004). Cell, 119, 181–193.

  • Lane ME, Elend M, Heidmann D, Herr A, Marzodko S, Herzig A and Lehner CF . (2000). Genetics, 155, 233–244.

  • Lane ME, Sauer K, Wallace K, Jan YN, Lehner CF and Vaessin H . (1996). Cell, 87, 1225–1235.

  • Leach TJ, Chotkowski HL, Wotring MG, Dilwith RL and Glaser RL . (2000). Mol. Cell. Biol., 20, 6308–6316.

  • Lee LA and Orr-Weaver TL . (2003). Annu. Rev. Genet., 37, 545–578.

  • Lehner CF and O’Farrell PH . (1989). Cell, 56, 957–968.

  • Lehner CF and O’Farrell PH . (1990). Cell, 61, 535–547.

  • Lewis PW, Beall EL, Fleischer TC, Georlette D, Link AJ and Botchan MR . (2004). Genes Dev., 18, 2929–2940.

  • Lilly MA and Spradling AC . (1996). Genes Dev., 10, 2514–2526.

  • Lopez-Schier H and St Johnston D . (2001). Genes Dev., 15, 1393–1405.

  • Madigan JP, Chotkowski HL and Glaser RL . (2002). Nucleic Acids Res., 30, 3698–3705.

  • Maines JZ, Stevens LM, Tong X and Stein D . (2004). Development, 131, 775–786.

  • Makunin IV, Volkova EI, Belyaeva ES, Nabirochkina EN, Pirrotta V and Zhimulev IF . (2002). Genetics, 160, 1023–1034.

  • Meyer CA, Jacobs HW, Datar SA, Du W, Edgar BA and Lehner CF . (2000). EMBO J., 19, 4533–4542.

  • Meyer CA, Jacobs HW and Lehner CF . (2002a). Curr. Biol., 12, 661–666.

  • Meyer CA, Jacobs HW and Lehner CF . (2002b). Curr. Biol., 12, 661–666.

  • Moberg KH, Bell DW, Wahrer DC, Haber DA and Hariharan IK . (2001). Nature, 413, 1183–1193.

  • Neufeld TP, de la Cruz AF, Johnston LA and Edgar BA . (1998). Cell, 93, 1183–1193.

  • Nurse P . (1994). Cell, 79, 547–550.

  • Nyberg KA, Michelson RJ, Putnam CW and Weinert TA . (2002). Annu. Rev. Genet., 36, 617–656.

  • Parisi T, Beck AR, Rougier N, McNeil T, Lucian L, Werb Z and Amati B . (2003). EMBO J., 22, 4794–4803.

  • Park Y, Rangel C, Reynolds MM, Caldwell MC, Johns M, Nayak M, Welsh CJ, McDermott S and Datta S . (2003). Dev. Biol., 253, 247–257.

  • Paulovich AG and Hartwell LH . (1995). Cell, 82, 841–847.

  • Pierce SB, Yost C, Britton JS, Loo LW, Flynn EM, Edgar BA and Eisenman RN . (2004). Development, 131, 2317–2327.

  • Prober DA and Edgar BA . (2002). Genes Dev., 16, 2286–2299.

  • Reed BH and Orr-Weaver TL . (1997). Development, 124, 3543–3553.

  • Royzman I, Austin RJ, Bosco G, Bell SP and Orr-Weaver TL . (1999). Genes Dev., 13, 827–840.

  • Royzman I, Hayashi-Hagihara A, Dej KJ, Bosco G, Lee JY and Orr-Weaver TL . (2002). Mech. Dev., 119, 225–237.

  • Royzman I, Whittaker AJ and Orr-Weaver TL . (1997). Genes Dev., 11, 1999–2011.

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K and Linn S . (2004). Annu. Rev. Biochem., 73, 39–85.

  • Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D and Edgar BA . (2003). Nat. Cell Biol., 5, 566–571.

  • Sauer K, Knoblich JA, Richardson H and Lehner CF . (1995). Genes Dev., 9, 1327–1339.

  • Schaeffer V, Althauser C, Shcherbata HR, Deng WM and Ruohola-Baker H . (2004). Curr. Biol., 14, 630–636.

  • Shcherbata HR, Althauser C, Findley SD and Ruohola-Baker H . (2004). Development, 131, 3169–3181.

  • Sigrist SJ and Lehner CF . (1997). Cell, 90, 671–681.

  • Smith AV and Orr-Weaver TL . (1991). Development, 112, 997–1008.

  • Stern B, Ried G, Clegg NJ, Grigliatti TA and Lehner CF . (1993). Development, 117, 219–232.

  • Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P, Breuer S, Thomas G and Hafen E . (2003). Nat. Cell Biol., 5, 559–565.

  • Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O and Reed SI . (2001). Nature, 413, 316–322.

  • Su TT and O’Farrell PH . (1997). J. Cell Biol., 139, 13–21.

  • Su TT and O’Farrell PH . (1998). J. Cell Biol., 140, 451–460.

  • Swanhart L, Kupsco J and Duronio RJ . (2004). Methods Mol. Biol., 296, 69–94.

  • Tercero JA, Longhese MP and Diffley JF . (2003). Mol. Cell, 11, 1323–1336.

  • Traas J, Hulskamp M, Gendreau E and Hofte H . (1998). Curr. Opin. Plant Biol., 1, 498–503.

  • Vidwans SJ, DiGregorio PJ, Shermoen AW, Foat B, Iwasa J, Yakubovich N and O’Farrell PH . (2002). Curr. Biol., 12, 829–833.

  • Weigmann K, Cohen SM and Lehner CF . (1997). Development, 124, 3555–3563.

  • Weiss A, Herzig A, Jacobs H and Lehner CF . (1998). Curr. Biol., 8, 239–242.

  • Weng L, Zhu C, Xu J and Du W . (2003). EMBO J., 22, 3865–3875.

  • Whitfield WGF, Gonzalez C, Maldonado-Codina G and Glover DM . (1990). EMBO J., 9, 2563–2572.

  • Won KA and Reed SI . (1996). EMBO J., 15, 4182–4193.

  • Xin S, Weng L, Xu J and Du W . (2002). Development, 129, 1345–1356.

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA and Pan D . (2003). Nat. Cell Biol., 5, 578–581.

  • Zybina EV and Zybina TG . (1996). Int. Rev. Cytol., 165, 53–119.

Download references

Acknowledgements

We thank Tin Tin Su and Brian Calvi for helpful discussions. We thank Juan Riesgo Escovar for comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary A Lilly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lilly, M., Duronio, R. New insights into cell cycle control from the Drosophila endocycle. Oncogene 24, 2765–2775 (2005). https://doi.org/10.1038/sj.onc.1208610

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208610

Keywords

This article is cited by

Search

Quick links