Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Partial downregulation of MAD1 causes spindle checkpoint inactivation and aneuploidy, but does not confer resistance towards taxol

Abstract

The mitotic spindle assembly checkpoint ensures proper chromosome segregation during mitosis by inhibiting the onset of anaphase until all kinetochores are attached to the mitotic spindle and tension across the kinetochores is generated. Here, we report that the stable partial downregulation of the spindle checkpoint gene MAD1, which is observed in human cancer, leads to a functional inactivation of the spindle checkpoint resulting in gross aneuploidy. Interestingly, although Mad1 is thought to act as a kinetochore based activator of Mad2 during checkpoint activation, we show that normal levels of Mad2, but not of Mad1, are required for preventing premature sister chromatid separation and for maintaining the timing of an undisturbed mitosis, suggesting a Mad1 independent function of Mad2 that operates independent of its checkpoint function. Most significantly, a partial repression of either MAD1 or MAD2 confers resistance to nocodazole, a drug that inhibits microtubule attachment. In contrast, sensitivity to clinically relevant drugs like taxol or monastrol that inhibit the generation of tension across kinetochores is not modulated by partial downregulation of MAD1, suggesting a functional bifurcation of spindle checkpoint dependent apoptotic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Anand S, Penrhyn-Lowe S and Venkitaraman AR . (2003). Cancer Cell, 3, 51–62.

  • Babu JR, Jeganathan KB, Baker DJ, Wu X, Kang-Decker N and van Deursen JM . (2003). J. Cell Biol., 160, 341–353.

  • Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P and van Deursen JM . (2004). Nat. Genet., 36, 744–749.

  • Bharadwaj R and Yu H . (2004). Oncogene, 23, 2016–2027.

  • Brummelkamp TR, Bernards R and Agami R . (2002). Science, 296, 550–553.

  • Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW and Vogelstein B . (1998). Nature, 392, 300–303.

  • Campbell M and Gorbsky G . (1995). J. Cell Biol., 129, 1195–1204.

  • Campbell MS, Chan GK and Yen TJ . (2001). J. Cell Sci., 114, 953–963.

  • Canman JC, Salmon ED and Fang G . (2002). Cell Motil. Cytoskeleton, 52, 61–65.

  • Chen RH, Brady DM, Smith D, Murray AW and Hardwick KG . (1999). Mol. Biol. Cell, 10, 2607–2618.

  • Dai W, Wang Q, Liu T, Swamy M, Fang Y, Xie S, Mahmood R, Yang YM, Xu M and Rao CV . (2004). Cancer Res., 64, 440–445.

  • Ditchfield C, Johnson VL, Tighe A, Ellston R, Haworth C, Johnson T, Mortlock A, Keen N and Taylor SS . (2003). J. Cell Biol., 161, 267–280.

  • Dobles M, Liberal V, Scott ML, Benezra R and Sorger PK . (2000). Cell, 101, 635–645.

  • Duesberg P, Li R, Rasnick D, Rausch C, Willer A, Kraemer A, Yerganian G and Hehlmann R . (2000). Cancer Genet. Cytogenet., 119, 83–93.

  • Fang G . (2002). Mol. Biol. Cell, 13, 755–766.

  • Fang G, Yu H and Kirschner MW . (1998). Genes Dev., 12, 1871–1883.

  • Gorbsky GJ, Chen RW and Murray AW . (1998). J. Cell Biol., 141, 1193–1205.

  • Gurtu V, Kain SR and Zhang G . (1997). Anal. Biochem., 251, 98–102.

  • Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL and Peters JM . (2003). J. Cell Biol., 161, 281–294.

  • Hernando E, Orlow I, Liberal V, Nohales G, Benezra R and Cordon-Cardo C . (2001). Int. J. Cancer, 95, 223–227.

  • Herrmann M, Lorenz HM, Voll R, Grunke M, Woith W and Kalden JR . (1994). Nucleic Acids Res., 22, 5506–5507.

  • Jin DY, Spencer F and Jeang KT . (1998). Cell, 93, 81–91.

  • Jordan MA and Wilson L . (2004). Nat. Rev. Cancer, 4, 253–265.

  • Kalitsis P, Earle E, Fowler KJ and Choo KH . (2000). Genes Dev., 14, 2277–2282.

  • Kasai T, Iwanaga Y, Iha H and Jeang KT . (2002). J. Biol. Chem., 277, 5187–5193.

  • Kops GJ, Foltz DR and Cleveland DW . (2004). Proc. Natl. Acad. Sci. USA, 101, 8699–8704.

  • Lengauer C, Kinzler KW and Vogelstein B . (1998). Nature, 396, 643–649.

  • Lens SM, Wolthuis RM, Klompmaker R, Kauw J, Agami R, Brummelkamp T, Kops G and Medema RH . (2003). EMBO J., 22, 2934–2947.

  • Li F, Ackermann EJ, Bennett CF, Rothermel AL, Plescia J, Tognin S, Villa A, Marchisio PC and Altieri DC . (1999). Nat. Cell Biol., 1, 461–466.

  • Li X and Nicklas RB . (1995). Nature, 373, 630–632.

  • Li Y and Benezra R . (1996). Science, 274, 246–248.

  • Li Y, Gorbea C, Mahaffey D, Rechsteiner M and Benezra R . (1997). Proc. Natl. Acad. Sci. USA, 94, 12431–12436.

  • Luo X, Tang Z, Rizo J and Yu H . (2002). Mol. Cell, 9, 59–71.

  • Martin-Lluesma S, Stucke VM and Nigg EA . (2002). Science, 297, 2267–2270.

  • Masuda A, Maeno K, Nakagawa T, Saito H and Takahashi T . (2003). Am. J. Pathol., 163, 1109–1116.

  • Masuda A and Takahashi T . (2002). Oncogene, 21, 6884–6897.

  • Meraldi P, Draviam VM and Sorger PK . (2004). Dev. Cell, 7, 45–60.

  • Michel L, Diaz-Rodriguez E, Narayan G, Hernando E, Murty VV and Benezra R . (2004). Proc. Natl. Acad. Sci. USA, 101, 4459–4464.

  • Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Sorger PK, Murty VV and Benezra R . (2001). Nature, 409, 355–359.

  • Musacchio A and Hardwick KG . (2002). Nat. Rev. Mol. Cell Biol., 3, 731–741.

  • Nasmyth K, Peters JM and Uhlmann F . (2000). Science, 288, 1379–1385.

  • Nomoto S, Haruki N, Takahashi T, Masuda A, Koshikawa T, Fujii Y and Osada H . (1999). Oncogene, 18, 7180–7183.

  • Peters JM . (2002). Mol. Cell, 9, 931–943.

  • Rajagopalan H and Lengauer C . (2004). Nature, 432, 338–341.

  • Rieder C, Cole R, Khodjakov A and Sluder G . (1995). J. Cell Biol., 130, 941–948.

  • Shah JV and Cleveland DW . (2000). Cell, 103, 997–1000.

  • Shannon KB, Canman JC and Salmon ED . (2002). Mol. Biol. Cell, 13, 3706–3719.

  • Shichiri M, Yoshinaga K, Hisatomi H, Sugihara K and Hirata Y . (2002). Cancer Res., 62, 13–17.

  • Sieber OM, Heinimann K and Tomlinson IP . (2003). Nat. Rev. Cancer, 3, 701–708.

  • Sironi L, Melixetian M, Faretta M, Prosperini E, Helin K and Musacchio A . (2001). EMBO J., 20, 6371–6382.

  • Sudakin V, Chan GK and Yen TJ . (2001). J. Cell Biol., 154, 925–936.

  • Sudo T, Nitta M, Saya H and Ueno NT . (2004). Cancer Res., 64, 2502–2508.

  • Takahashi T, Haruki N, Nomoto S, Masuda A, Saji S, Osada H and Takahashi T . (1999). Oncogene, 18, 4295–4300.

  • Tang Z, Bharadwaj R, Li B and Yu H . (2001). Dev. Cell, 1, 227–237.

  • Taylor S and McKeon F . (1997). Cell, 89, 727–735.

  • Taylor SS, Scott MI and Holland AJ . (2004). Chromosome Res., 12, 599–616.

  • Vigneron S, Prieto S, Bernis C, Labbe JC, Castro A and Lorca T . (2004). Mol. Biol. Cell, 15, 4584–4596.

  • Vogel C, Kienitz A, Hofmann I, Muller R and Bastians H . (2004a). Oncogene, 23, 6845–6853.

  • Vogel C, Kienitz A, Muller R and Bastians H . (2004b). J. Biol. Chem., 280, 4025–4028.

  • Wang X, Jin DY, Ng RW, Feng H, Wong YC, Cheung AL and Tsao SW . (2002). Cancer Res., 62, 1662–1668.

  • Yu H . (2002). Curr. Opin. Cell Biol., 14, 706–714.

Download references

Acknowledgements

We thank Tim Yen for generously providing Mad1 antibodies, Bert Vogelstein, Loren Michel and Robert Benezra for providing HCT116 and derivative cell lines and Rene Bernards for the pSuper vector. We are grateful to Irmgard Hofmann for help with the generation of the knockdown cell lines and to Heike Krebber for helpful discussions and critically reading the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft, the Deutsche Krebshilfe and the PE Kempkes Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Bastians.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kienitz, A., Vogel, C., Morales, I. et al. Partial downregulation of MAD1 causes spindle checkpoint inactivation and aneuploidy, but does not confer resistance towards taxol. Oncogene 24, 4301–4310 (2005). https://doi.org/10.1038/sj.onc.1208589

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208589

Keywords

This article is cited by

Search

Quick links