Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Loss of p21 disrupts p14ARF-induced G1 cell cycle arrest but augments p14ARF-induced apoptosis in human carcinoma cells

Abstract

The human INK4a locus encodes two structurally unrelated tumor suppressor proteins, p16INK4a and p14ARF (p19ARF in the mouse), which are frequently inactivated in human cancer. Both the proapoptotic and cell cycle-regulatory functions of p14ARF were initially proposed to be strictly dependent on a functional p53/mdm-2 tumor suppressor pathway. However, a number of recent reports have implicated p53-independent mechanisms in the regulation of cell cycle arrest and apoptosis induction by p14ARF. Here, we show that the G1 cell cycle arrest induced by p14ARF entirely depends on both p53 and p21 in human HCT116 and DU145 carcinoma cells. In contrast, neither loss of p53 nor p21 impaired apoptosis induction by p14ARF as evidenced by nuclear DNA fragmentation, phosphatidyl serine exposure, and caspase activation, which included caspase-3/7- and caspase-9-like activities. However, lack of functional p21 resulted in the accumulation of cells in G2/M phase of the cell cycle and markedly enhanced p14ARF-induced apoptosis that was, nevertheless, efficiently inhibited by the cell permeable broad-spectrum caspase inhibitor zVAD-fmk (valyl-alanyl-aspartyl-(O)-methyl)-fluoromethylketone). Thus, loss of cell cycle restriction point control in the absence of p21 may interfere with p14ARF-induced apoptosis. Finally, these data indicate that the signaling events required for G1 cell cycle arrest and apoptosis induction by p14ARF dissociate upstream of p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Bissonnette N and Hunting DJ . (1998). Oncogene, 16, 3461–3469.

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW and Vogelstein B . (1998). Science, 282, 1497–1501.

  • Carnero A, Hudson JD, Price CM and Beach DH . (2000). Nat. Cell Biol., 2, 148–155.

  • Cleveland JL and Sherr CJ . (2004). Cancer Cell, 6, 309–311.

  • Craig C, Kim M, Ohri E, Wersto R, Katayose D, Li Z, Choi YH, Mudahar B, Srivastava S, Seth P and Cowan K . (1998). Oncogene, 16, 265–272.

  • Daniel PT . (2000). Leukemia, 14, 2035–2044.

  • Daniel PT, Schulze-Osthoff K, Belka C and Güner D . (2003). Essays Biochem., 39, 73–88.

  • Daniel PT, Sturm I, Ritschel S, Friedrich K, Dörken B, Bendzko P and Hillebrand T . (1999). Anal. Biochem., 266, 110–115.

  • de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ and Lowe SW . (1998). Genes Dev., 12, 2434–2442.

  • Donato NJ and Perez M . (1998). J. Biol. Chem., 273, 5067–5072.

  • Duro D, Bernard O, Della Valle V, Berger R and Larsen CJ . (1995). Oncogene, 11, 21–29.

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ and Cleveland JL . (1999). Genes Dev., 13, 2658–2669.

  • Eymin B, Karayan L, Seite P, Brambilla C, Brambilla E, Larsen CJ and Gazzeri S . (2001). Oncogene, 20, 1033–1041.

  • Eymin B, Leduc C, Coll JL, Brambilla E and Gazzeri S . (2003). Oncogene, 22, 1822–1835.

  • Fotedar R, Brickner H, Saadatmandi N, Rousselle T, Diederich L, Munshi A, Jung B, Reed JC and Fotedar A . (1999). Oncogene, 18, 3652–3658.

  • Gillissen B, Essmann F, Graupner V, Starck L, Radetzki S, Dörken B, Schulze-Osthoff K and Daniel PT . (2003). EMBO J., 22, 3580–3590.

  • Groth A, Weber JD, Willumsen BM, Sherr CJ and Roussel MF . (2000). J. Biol. Chem., 275, 27473–27480.

  • Güner D, Belka C and Daniel PT . (2003). Curr. Med. Chem. Anti-Cancer Agents, 3, 319–326.

  • Hemmati PG, Gillissen B, von Haefen C, Wendt J, Starck L, Güner D, Dörken B and Daniel PT . (2002). Oncogene, 21, 3149–3161.

  • Kokontis JM, Wagner AJ, O'Leary M, Liao S and Hay N . (2001). Oncogene, 20, 659–668.

  • Kuo ML, Duncavage EJ, Mathew R, den Besten W, Pei D, Naeve D, Yamamoto T, Cheng C, Sherr CJ and Roussel MF . (2003). Cancer Res., 63, 1046–1053.

  • Mahyar-Roemer M and Roemer K . (2001). Oncogene, 20, 3387–3398.

  • Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ and Sidransky D . (1995). Cancer Res., 55, 2995–2997.

  • Martelli F, Hamilton T, Silver DP, Sharpless NE, Bardeesy N, Rokas M, DePinho RA, Livingston DM and Grossman SR . (2001). Proc. Natl. Acad. Sci. USA, 98, 4455–4460.

  • Mason SL, Loughran O and La Thangue NB . (2002). Oncogene, 21, 4220–4230.

  • Modestou M, Puig-Antich V, Korgaonkar C, Eapen A and Quelle DE . (2001). Cancer Res. 61, 3145–3150.

  • Normand G, Hemmati PG, Verdoodt B, von Haefen C, Wendt J, Güner D, May E, Dörken B and Daniel PT . (2004). J. Biol. Chem., 6 Dec 2004; [Epub ahead of print].

  • Palmero I, Pantoja C and Serrano M . (1998). Nature, 395, 125–126.

  • Pennington KN, Taylor JA, Bren GD and Paya CV . (2001). Mol. Cell. Biol., 21, 1930–1941.

  • Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C and DePinho RA . (1998). Cell, 92, 713–723.

  • Qi Y, Gregory MA, Li Z, Brousal JP, West K and Hann SR . (2004). Nature, 431, 712–717.

  • Quelle DE, Zindy F, Ashmun RA and Sherr CJ . (1995). Cell, 83, 993–1000.

  • Radfar A, Unnikrishnan I, Lee HW, DePinho RA and Rosenberg N . (1998). Proc. Natl. Acad. Sci. USA, 95, 13194–13199.

  • Rau B, Sturm I, Lage H, Berger S, Schneider U, Hauptmann S, Wust P, Riess H, Schlag PM, Dörken B and Daniel PT . (2003). J. Clin. Oncol., 21, 3391–3401.

  • Rowland BD, Denissov SG, Douma S, Stunnenberg HG, Bernards R and Peeper DS . (2002). Cancer Cell., 2, 55–65.

  • Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR and Lowe SW . (1999). Genes Dev., 13, 2670–2677.

  • Scholz C, Starck L, Willimsky G, Blankenstein T, Dörken B and Daniel PT . (2002). Gene. Ther., 9, 1438–1446.

  • Sherr CJ . (2001). Nat. Rev. Mol. Cell. Biol., 2, 731–737.

  • Stone S, Jiang P, Dayananth P, Tavtigian SV, Katcher H, Parry D, Peters G and Kamb A . (1995). Cancer Res., 55, 2988–2994.

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH and Peters G . (1998). EMBO J., 17, 5001–5014.

  • Voorhoeve PM and Agami R . (2003). Cancer Cell, 4, 311–319.

  • Waldman T, Kinzler KW and Vogelstein B . (1995). Cancer Res., 55, 5187–5190.

  • Weber HO, Samuel T, Rauch P and Funk JO . (2002). Oncogene, 21, 3207–3212.

  • Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, Roussel MF, Sherr CJ and Zambetti GP . (2000). Genes Dev., 14, 2358–2365.

  • Yarbrough WG, Bessho M, Zanation A, Bisi JE and Xiong Y . (2002). Cancer Res., 62, 1171–1177.

  • Zhang Y, Fujita N and Tsuruo T . (1999). Oncogene, 18, 1131–1138.

  • Zhu J, Jiang J, Zhou W and Chen X . (1998). Cancer Res., 58, 5061–5065.

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ and Roussel MF . (1998). Genes Dev., 12, 2424–2433.

  • Zindy F, Williams RT, Baudino TA, Rehg JE, Skapek SX, Cleveland JL, Roussel MF and Sherr CJ . (2003). Proc. Natl. Acad. Sci. USA, 100, 15930–15935.

Download references

Acknowledgements

This work was supported by the Deutsche Krebshilfe Grant 10-2088-Da3 to PTD and PGH. We would like to thank Antje and Anja Richter and Jana Rossius for expert technical assistance. HCT116 cells were generously provided by Dr Bert Vogelstein, Johns Hopkins Cancer Center, Baltimore, MD, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter T Daniel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmati, P., Normand, G., Verdoodt, B. et al. Loss of p21 disrupts p14ARF-induced G1 cell cycle arrest but augments p14ARF-induced apoptosis in human carcinoma cells. Oncogene 24, 4114–4128 (2005). https://doi.org/10.1038/sj.onc.1208579

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208579

Keywords

This article is cited by

Search

Quick links