Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1

Abstract

Originally identified in Drosophila melanogaster, the Warts(Wts)/Lats protein kinase has been proposed to function with two other Drosophila proteins, Hippo (Hpo) and Salvador (Sav), in the regulation of cell cycle exit and apoptosis. In mammals, two candidate Warts/Lats homologs, termed Lats1 and Lats2, have been described, and the targeted disruption of LATS1 in mice increases tumor formation. Little, however, is known about the function and regulation of human Lats kinases. Here we report that human Mst2, a STE20-family member and purported Hpo ortholog, phosphorylates and activates both Lats1 and Lats2. Deletion analysis revealed that regulation of Lats1 occurs through the C-terminal, catalytic domain. Within this domain, two regulatory phosphorylation sites were identified by mass spectrometry. These sites, S909 in the activation loop and T1079 within a hydrophobic motif, have been highly conserved during evolution. Moreover, a direct interaction was observed between Mst2 and hWW45, a putative ortholog of Drosophila Sav. These results indicate that Mst2-like kinases regulate Lats kinase activities in an evolutionarily conserved regulatory pathway. Although the function of this pathway remains poorly understood in mammals, it is intriguing that, in Drosophila, it has been linked to development and tissue homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Buchberger A . (2002). Trends Cell Biol., 12, 216–221.

  • Cohen P, Holmes CF and Tsukitani Y . (1990). Trends Biochem. Sci., 15, 98–102.

  • Dammann R, Li C, Yoon JH, Chin PL, Bates S and Pfeifer GP . (2000). Nat. Genet., 25, 315–319.

  • Gobom J, Nordhoff E, Mirgorodskaya E, Ekman R and Roepstorff P . (1999). J. Mass Spectrom., 34, 105–116.

  • Graves JD, Gotoh Y, Draves KE, Ambrose D, Han DK, Wright M, Chernoff J, Clark EA and Krebs EG . (1998). EMBO J., 17, 2224–2234.

  • Harvey KF, Pfleger CM and Hariharan IK . (2003). Cell, 114, 457–467.

  • Hisaoka M, Tanaka A and Hashimoto H . (2002). Lab. Invest., 82, 1427–1435.

  • Hoffmann R, Metzger S, Spengler B and Otvos Jr L . (1999). J. Mass Spectrom., 34, 1195–1204.

  • Hori T, Takaori-Kondo A, Kamikubo Y and Uchiyama T . (2000). Oncogene, 19, 3101–3109.

  • James P, Halladay J and Craig EA . (1996). Genetics, 144, 1425–1436.

  • Jia J, Zhang W, Wang B, Trinko R and Jiang J . (2003). Genes Dev., 17, 2514–2519.

  • Johnson LN, Noble ME and Owen DJ . (1996). Cell, 85, 149–158.

  • Justice RW, Zilian O, Woods DF, Noll M and Bryant PJ . (1995). Genes Dev., 9, 534–546.

  • Kango-Singh M, Nolo R, Tao C, Verstreken P, Hiesinger PR, Bellen HJ and Halder G . (2002). Development, 129, 5719–5730.

  • Khokhlatchev A, Rabizadeh S, Xavier R, Nedwidek M, Chen T, Zhang XF, Seed B and Avruch J . (2002). Curr. Biol., 12, 253–265.

  • Lee KK, Ohyama T, Yajima N, Tsubuki S and Yonehara S . (2001). J. Biol. Chem., 276, 19276–19285.

  • Lee KK and Yonehara S . (2002). J. Biol. Chem., 277, 12351–12358.

  • Li Y, Pei J, Xia H, Ke H, Wang H and Tao W . (2003). Oncogene, 22, 4398–4405.

  • Millward TA, Hess D and Hemmings BA . (1999). J. Biol. Chem., 274, 33847–33850.

  • Morisaki T, Hirota T, Iida S, Marumoto T, Hara T, Nishiyama Y, Kawasuzi M, Hiraoka T, Mimori T, Araki N, Izawa I, Inagaki M and Saya H . (2002). FEBS Lett., 529, 319–324.

  • Nishiyama Y, Hirota T, Morisaki T, Hara T, Marumoto T, Iida S, Makino K, Yamamoto H, Hiraoka T, Kitamura N and Saya H . (1999). FEBS Lett., 459, 159–165.

  • Pantalacci S, Tapon N and Leopold P . (2003). Nat. Cell Biol., 5, 921–927.

  • Praskova M, Khoklatchev A, Ortiz-Vega S and Avruch J . (2004). Biochem. J., 381, 453–462.

  • Preisinger C, Short B, De CV, Bruyneel E, Haas A, Kopajtich R, Gettemans J and Barr FA . (2004). J. Cell Biol., 164, 1009–1020.

  • Scheel H and Hofmann K . (2003). Curr. Biol., 13, R899–R900.

  • Seelos C . (1997). Anal. Biochem., 245, 109–111.

  • Shevchenko A, Wilm M, Vorm O and Mann M . (1996). Anal. Chem., 68, 850–858.

  • Sillje HHW, Takahashi K, Tanaka K, Van Houwe G and Nigg EA . (1999). EMBO J., 18, 5691–5702.

  • Song MS, Song SJ, Ayad NG, Chang JS, Lee JH, Hong HK, Lee H, Choi N, Kim J, Kim H, Kim JW, Choi EJ, Kirschner MW and Lim DS . (2004). Nat. Cell Biol., 6, 129–137.

  • St John MA, Tao W, Fei X, Fukumoto R, Carcangiu ML, Brownstein DG, Parlow AF, McGrath J and Xu T . (1999). Nat. Genet., 21, 182–186.

  • Tamaskovic R, Bichsel SJ and Hemmings BA . (2003). FEBS Lett., 546, 73–80.

  • Tao W, Zhang S, Turenchalk GS, Stewart RA, St John MA, Chen W and Xu T . (1999). Nat. Genet., 21, 177–181.

  • Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber DA and Hariharan IK . (2002). Cell, 110, 467–478.

  • Taylor LK, Wang HC and Erikson RL . (1996). Proc. Natl. Acad. Sci. USA, 93, 10099–10104.

  • Toji S, Yabuta N, Hosomi T, Nishihara S, Kobayashi T, Suzuki S, Tamai K and Nojima H . (2004). Genes Cells, 9, 383–397.

  • Udan RS, Kango-Singh M, Nolo R, Tao C and Halder G . (2003). Nat. Cell Biol., 5, 914–920.

  • Valverde P . (2000). Biochem. Biophys. Res. Commun., 276, 990–998.

  • Wu S, Huang J, Dong J and Pan D . (2003). Cell, 114, 445–456.

  • Xu T, Wang W, Zhang S, Stewart RA and Yu W . (1995). Development, 121, 1053–1063.

  • Yabuta N, Fujii T, Copeland NG, Gilbert DJ, Jenkins NA, Nishiguchi H, Endo Y, Toji S, Tanaka H, Nishimune Y and Nojima H . (2000). Genomics, 63, 263–270.

  • Yang X, Li DM, Chen W and Xu T . (2001). Oncogene, 20, 6516–6523.

  • Yang X, Yu K, Hao Y, Li DM, Stewart R, Insogna KL and Xu T . (2004). Nat. Cell Biol, 6, 609–617.

Download references

Acknowledgements

We thank Elena Nigg and Anja Wehner for excellent technical assistance. We are also grateful to Francis Barr and Hideyuki Saya for providing plasmids and thank Roman Körner for his help and advice in MS analysis. This work was supported by the Max-Planck Institute. Eunice HY Chan is a scholarship holder of the Hong Kong Croucher Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman H W Silljé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, E., Nousiainen, M., Chalamalasetty, R. et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24, 2076–2086 (2005). https://doi.org/10.1038/sj.onc.1208445

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208445

Keywords

This article is cited by

Search

Quick links