Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Distinct gene expression patterns associated with FLT3- and NRAS-activating mutations in acute myeloid leukemia with normal karyotype

Abstract

In acute myeloid leukemia (AML), constitutive activation of the FLT3 receptor tyrosine kinase, either by internal tandem duplications (FLT3-ITD) of the juxtamembrane region or by point mutations in the second tyrosine kinase domain (FLT3-TKD), as well as point mutations of the NRAS gene (NRAS-PM) are among the most frequent somatic gene mutations. To elucidate whether these mutations cause aberrant signal transduction in AML, we used gene expression profiling in a series of 110 newly diagnosed AML patients with normal karyotype. The different algorithms used for data analysis revealed highly concordant sets of genes, indicating that the identified gene signatures are specific for each analysed subgroup. Whereas samples with FLT3-ITD and FLT3-TKD could be separated with up to 100% accuracy, this did not apply for NRAS-PM and wild-type samples, suggesting that only FLT3-ITD and FLT3-TKD are associated with an apparent signature in AML. The set of discriminating genes included several known genes, which are involved in cell cycle control (CDC14A, WEE1), gene transcription (HOXB5, FOXA1), and signal transduction (SMG1). In conclusion, we showed that unique gene expression patterns can be correlated with FLT3-ITD and FLT3-TKD. This might lead to the identification of further pathogenetic relevant candidate genes particularly in AML with normal karyotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR and Sultan C . (1985). Ann. Intern. Med., 103, 620–625.

  • Bishop CM (ed). (1995). Neural Networks for Pattern Recognition. Oxford University Press: Oxford, UK.

    Google Scholar 

  • Bloomfield CD, Lawrence D, Byrd JC, Carroll A, Pettenati MJ, Tantravahi R, Patil SR, Davey FR, Berg DT, Schiffer CA, Arthur DC and Mayer RJ . (1998). Cancer Res., 58, 4173–4179.

  • Buchner T, Hiddemann W, Berdel WE, Wormann B, Schoch C, Fonatsch C, Loffler H, Haferlach T, Ludwig WD, Maschmeyer G, Staib P, Aul C, Gruneisen A, Lengfelder E, Frickhofen N, Kern W, Serve HL, Mesters RM, Sauerland MC and Heinecke A . (2003). J. Clin. Oncol., 21, 4496–4504.

  • Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R, Dohner H and Pollack JR . (2004). N. Engl. J. Med., 350, 1605–1616.

  • Dohner K, Tobis K, Ulrich R, Frohling S, Benner A, Schlenk RF and Dohner H . (2002). J. Clin. Oncol., 20, 3254–3261.

  • Epstein DJ, McMahon AP and Joyner AL . (1999). Development, 126, 281–292.

  • Frohling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K, Dohner H, Dohner K and AML Study Group Ulm. (2002). Blood, 100, 4372–4380.

  • Gilliland DG and Griffin JD . (2002). Blood, 100, 1532–1542.

  • Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A and Goldstone A . (1998). Blood, 92, 2322–2333.

  • Griswold IJ, Shen LJ, La Rosee P, Demehri S, Heinrich MC, Braziel RM, McGreevey L, Haley AD, Giese N, Druker BJ and Deininger MW . (2004). Blood, 104, 2912–2918.

  • Heald R, McLoughlin M and McKeon F . (1993). Cell, 74, 463–474.

  • Huber W, Von Heydebreck A, Sultmann H, Poustka A and Vingron M . (2002). Bioinformatics, 18, 96–104.

  • Kelly LM, Yu JC, Boulton CL, Apatira M, Li J, Sullivan CM, Williams I, Amaral SM, Curley DP, Duclos N, Neuberg D, Scarborough RM, Pandey A, Hollenbach S, Abe K, Lokker NA, Gilliland DG and Giese NA . (2002). Cancer Cell, 5, 421–432.

  • Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, Asou N, Kuriyama K, Jinnai I, Shimazaki C, Akiyama H, Saito K, Oh H, Motoji T, Omoto E, Saito H, Ohno R and Ueda R . (1999). Blood, 93, 3074–3080.

  • Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H and Naoe T . (1998). Leukemia, 12, 1333–1337.

  • Korshunov A, Neben K, Wrobel G, Tews B, Benner A, Hahn M, Golanov A and Lichter P . (2003). Am. J. Pathol., 163, 1721–1727.

  • Korz C, Pscherer A, Benner A, Mertens D, Schaffner C, Leupolt E, Dohner H, Stilgenbauer S and Lichter P . (2002). Blood, 99, 4554–4561.

  • Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK, Goldstone AH and Linch DC . (2001). Blood, 98, 1752–1759.

  • Li Y, Li H, Wang MN, Lu D, Bassi R, Wu Y, Zhang H, Balderes P, Ludwig DL, Pytowski B, Kussie P, Piloto O, Small D, Bohlen P, Witte L, Zhu Z and Hicklin DJ . (2004). Blood, 104, 1137–1144.

  • Lin L, Miller CT, Contreras JI, Prescott MS, Dagenais SL, Wu R, Yee J, Orringer MB, Misek DE, Hanash SM, Glover TW and Beer DG . (2002). Cancer Res., 62, 5273–5279.

  • Lisovsky M, Estrov Z, Zhang X, Consoli U, Sanchez-Williams G, Snell V, Munker R, Goodacre A, Savchenko V and Andreeff M . (1996). Blood, 88, 3987–3997.

  • Mailand N, Lukas C, Kaiser BK, Jackson PK, Bartek J and Lukas J . (2002). Nat. Cell Biol., 4, 317–322.

  • Mitelman F (ed). (1995). An International System for Human Cytogenetic Nomenclature. Karger: Basel, Switzerland.

    Google Scholar 

  • Nabney IT (ed). (2002). NETLAB: Algorithms for Pattern Recognition. Springer Publishers: Heidelberg, Germany.

    Google Scholar 

  • Neben K, Korshunov A, Benner A, Wrobel G, Hahn M, Golanov A and Lichter P . (2004). Cancer Res., 64, 3103–3111.

  • Neubauer A, Dodge RK, George SL, Davey FR, Silver RT, Schiffer CA, Mayer RJ, Ball ED, Wurster-Hill D and Bloomfield CD . (1994). Blood, 83, 1603–1611.

  • Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein Jr EH and Scott MP . (1997). Science, 276, 817–821.

  • Pfaffl MW . (2001). Nucleic Acids Res., 29, e45.

  • Ragg T . (2002). AI. Commun., 15, 61–74.

  • Reuter CW, Morgan MA and Bergmann L . (2000). Blood, 96, 1655–1669.

  • Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T, Buchner T, Wormann B, Hiddemann W and Griesinger F . (2000). Leukemia, 14, 796–804.

  • Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, Loffler H, Sauerland CM, Serve H, Buchner T, Haferlach T and Hiddemann W . (2002). Blood, 100, 59–66.

  • Schoch C, Kohlmann A, Schnittger S, Brors B, Dugas M, Mergenthaler S, Kern W, Hiddemann W, Eils R and Haferlach T . (2002). Proc. Natl. Acad. Sci. USA, 99, 10008–10013.

  • Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, Wermke M, Bornhauser M, Ritter M, Neubauer A, Ehninger G and Illmer T . (2002). Blood, 99, 4326–4335.

  • Tibshirani R, Hastie T, Narasimhan B and Chu G . (2002). Proc. Natl. Acad. Sci. USA, 99, 6567–6572.

  • Tusher VG, Tibshirani R and Chu G . (2001). Proc. Natl. Acad. Sci. USA, 98, 5116–5121.

  • Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM, Beverloo HB, Moorhouse MJ, van der Spek PJ, Lowenberg B and Delwel R . (2004). N. Engl. J. Med, 350, 1617–1628.

  • Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, Gilliland DG and Griffin JD . (2002). Cancer Cell, 5, 433–443.

  • Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R and Naoe T . (2001). Blood, 97, 2434–2439.

  • Yamashita A, Ohnishi T, Kashima I, Taya Y and Ohno S . (2001). Genes Dev., 15, 2215–2228.

  • Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M, Estrov Z, Mills GB and Andreeff M . (2004). Leukemia, 18, 267–275.

Download references

Acknowledgements

We thank Heidi Kramer for her excellent technical assistance. This study was supported by two grants of the Bundesministerium für Bildung und Forschung (FKZ 01 KW 9937 and NGFN, 01 GR 0101). KN is scholar of the Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS 2001/NAT-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lichter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neben, K., Schnittger, S., Brors, B. et al. Distinct gene expression patterns associated with FLT3- and NRAS-activating mutations in acute myeloid leukemia with normal karyotype. Oncogene 24, 1580–1588 (2005). https://doi.org/10.1038/sj.onc.1208344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208344

Keywords

This article is cited by

Search

Quick links