Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Constitutive activation of the shh–ptc1 pathway by a patched1 mutation identified in BCC

Abstract

Mutations in the transmembrane receptor patched1 (ptc1) are responsible for the majority of basal cell carcinoma (BCC) cases. Many of these mutations, including ptc1-Q688X, result in premature truncation of the ptc1 protein. ptc1-Q688X has been identified in patients with both BCC and nevoid basal cell carcinoma syndrome, an inheritable disorder causing a predisposition to cancer susceptibility. Here we describe a mechanism by which ptc1-Q688X causes constitutive cellular signaling. Cells expressing ptc1-Q688X demonstrate an increase in cell cycle progression and induce cell transformation. The ptc1-Q688X mutant enhances Gli1 activity, a downstream reporter of sonic hedgehog (shh)–ptc1 signaling, independent of shh stimulation. In contrast to wild-type ptc1, ptc1-Q688X fails to associate with endogenous cyclin B1. Expression of nuclear-targeted cyclin B1 derivatives promotes Gli1-dependent transcription, which correlates temporally with cyclin B1–cdk1 kinase activity. Coexpression of wild-type ptc1 with a nuclear-targeted cyclin B1 derivative, mutated to mimic constitutive phosphorylation, dramatically decreases Gli1 activity. In addition, the coexpression of this constitutively nuclear cyclin B1 derivative with ptc1-Q688X substantially enhances foci formation. These studies therefore describe a molecular mechanism for the aberrant activity of ptc1-Q688X that includes the premature activation of the transcription factor Gli1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bailey EC, Milenkovic L, Scott MP, Collawn JF and Johnson RL . (2002). J. Biol. Chem., 277, 33632–33640.

  • Bailey EC, Zhou L and Johnson RL . (2003). Cancer Res., 63, 1636–1638.

  • Barnes EA, Kong M, Ollendorff V and Donoghue DJ . (2001). EMBO J., 20, 2214–2223.

  • Bell C, Tynan JA, Hart KC, Meyer AN, Robertson SC and Donoghue DJ . (2000). Mol. Biol. Cell, 11, 3589–3599.

  • Borgne A, Ostvold AC, Flament S and Meijer L . (1999). J. Biol. Chem., 274, 11977–11986.

  • Chen Y and Struhl G . (1998). Development, 125, 4943–4948.

  • Chidambaram A, Goldstein AM, Gailani MR, Gerrard B, Bale SJ, DiGiovanna JJ, Bale AE and Dean M . (1996). Cancer Res., 56, 4599–4601.

  • Cimini D, Fioravant D, Tanzarella C and Degrassi F . (1998). Chromosoma, 107, 479–485.

  • Cohen Jr MM . (1999). Int. J. Oral Maxillofac. Surg., 28, 216–223.

  • Dahmane N, Lee J, Robins P, Heller P and Ruiz i Altaba A . (1997). Nature, 389, 876–881.

  • Denef N, Neubuser D, Perez L and Cohen SM . (2000). Cell, 102, 521–531.

  • Ducommun B, Brambilla P, Felix MA, Franza Jr BR, Karsenti E and Draetta G . (1991). EMBO J., 10, 3311–3319.

  • Duman-Scheel M, Weng L, Xin S and Du W . (2002). Nature, 417, 299–304.

  • Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J and Livingston DM . (1993). Cell, 73, 487–497.

  • Freemantle SJ, Kerley JS, Olsen SL, Gross RH and Spinella MJ . (2002). Oncogene, 21, 2880–2889.

  • Gailani MR and Bale AE . (1997). J. Natl. Cancer Inst., 89, 1103–1109.

  • Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB, Dean M, Brash DE, Bale AE and Toftgard R . (1996). Nat. Genet., 14, 78–81.

  • Ghosh S, Schroeter D and Paweletz N . (1996). Exp. Cell Res., 227, 165–169.

  • Gorlin RJ . (1995). Dermatol. Clin., 13, 113–125.

  • Green J, Leigh IM, Poulsom R and Quinn AG . (1998). Br. J. Dermatol., 139, 911–915.

  • Hagting A, Jackman M, Simpson K and Pines J . (1999). Curr. Biol., 9, 680–689.

  • Hahn H, Christiansen J, Wicking C, Zaphiropoulos PG, Chidambaram A, Gerrard B, Vorechovsky I, Bale AE, Toftgard R, Dean M and Wainwright B . (1996a). J. Biol. Chem., 271, 12125–12128.

  • Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S, Negus K, Smyth I, Pressman C, Leffell DJ, Gerrard B, Goldstein AM, Dean M, Toftgard R, Chenevix-Trench G, Wainwright B and Bale AE . (1996b). Cell, 85, 841–851.

  • Hiwasa T and Sakiyama S . (1996). Cancer Lett., 99, 87–91.

  • Hunter T and Pines J . (1994). Cell, 79, 573–582.

  • Incardona JP, Gruenberg J and Roelink H . (2002). Curr. Biol., 12, 983–995.

  • Ito N and Rubin GM . (1999). Cell, 96, 529–539.

  • Jha MN, Bamburg JR and Bedford JS . (1994). Cancer Res., 54, 5011–5015.

  • Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein Jr EH and Scott MP . (1996). Science, 272, 1668–1671.

  • Kenney AM and Rowitch DH . (2000). Mol. Cell. Biol., 20, 9055–9067.

  • Lam CW, Xie J, To KF, Ng HK, Lee KC, Yuen NW, Lim PL, Chan LY, Tong SF and McCormick F . (1999). Oncogene, 18, 833–836.

  • Lee JJ, Ekker SC, von Kessler DP, Porter JA, Sun BI and Beachy PA . (1994). Science, 266, 1528–1537.

  • Li J, Meyer AN and Donoghue DJ . (1995). Mol. Biol. Cell, 6, 1111–1124.

  • Li J, Meyer AN and Donoghue DJ . (1997). Proc. Natl. Acad. Sci. USA, 94, 502–507.

  • Liu CZ, Yang JT, Yoon JW, Villavicencio E, Pfendler K, Walterhouse D and Iannaccone P . (1998). Gene, 209, 1–11.

  • Lowrey JA, Stewart GA, Lindey S, Hoyne GF, Dallman MJ, Howie SE and Lamb JR . (2002). J. Immunol., 169, 1869–1875.

  • Marigo V, Davey RA, Zuo Y, Cunningham JM and Tabin CJ . (1996). Nature, 384, 176–179.

  • Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ and Kato JY . (1994). Mol. Cell. Biol., 14, 2066–2076.

  • Murone M, Rosenthal A and de Sauvage FJ . (1999). Curr. Biol., 9, 76–84.

  • Nanni L, Ming JE, Bocian M, Steinhaus K, Bianchi DW, Die-Smulders C, Giannotti A, Imaizumi K, Jones KL, Campo MD, Martin RA, Meinecke P, Pierpont ME, Robin NH, Young ID, Roessler E and Muenke M . (1999). Hum. Mol. Genet., 8, 2479–2488.

  • Nurse P . (1990). Nature, 344, 503–508.

  • Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF and Sherr CJ . (1993). Genes Dev., 7, 1559–1571.

  • Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P and Reifenberger G . (1998). Cancer Res., 58, 1798–1803.

  • Resnitzky D, Gossen M, Bujard H and Reed SI . (1994). Mol. Cell. Biol., 14, 1669–1679.

  • Rieder CL and Cole R . (2000). Curr. Biol., 10, 1067–1070.

  • Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, Tsui LC and Muenke M . (1996). Nat. Genet., 14, 357–360.

  • Ruppert JM, Vogelstein B and Kinzler KW . (1991). Mol. Cell. Biol., 11, 1724–1728.

  • Sasaki H, Hui C-C, Nakafuku M and Kondoh H . (1997). Development, 124, 1313–1322.

  • Satoh JI and Kuroda Y . (2000). J. Neurosci. Methods, 94, 155–164.

  • Sherr CJ . (1996). Science, 274, 1672–1677.

  • Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, Pennica D, Goddard A, Phillips H, Noll M, Hooper JE, de Sauvage F and Rosenthal A . (1996). Nature, 384, 129–134.

  • Taipale J, Cooper MK, Maiti T and Beachy PA . (2002). Nature, 418, 892–897.

  • Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP and Beachy PA . (2000). Nature, 406, 1005–1009.

  • Tam SW, Belinsky GS and Schlegel R . (1995). J. Cell. Biochem., 59, 339–349.

  • Thibert C, Teillet M-A, Lapointe F, Mazelin L, Le Douarin NM and Mehlen P . (2003). Science, 301, 843–846.

  • Tobey RA, Oishi N and Crissman HA . (1990). Proc. Natl. Acad. Sci. USA, 87, 5104–5108.

  • Unden AB, Holmberg E, Lundh-Rozell B, Stahle-Backdahl M, Zaphiropoulos PG, Toftgard R and Vorechovsky I . (1996). Cancer Res., 56, 4562–4565.

  • Wicking C, Gillies S, Smyth I, Shanley S, Fowles L, Ratcliffe J, Wainwright B and Chenevix-Trench G . (1997a). Am. J. Med. Genet., 73, 304–307.

  • Wicking C and McGlinn E . (2001). Cancer Lett., 173, 1–7.

  • Wicking C, Shanley S, Smyth I, Gillies S, Negus K, Graham S, Suthers G, Haites N, Edwards M, Wainwright B and Chenevix-Trench G . (1997b). Am. J. Hum. Genet., 60, 21–26.

  • Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, Rosenthal A, Epstein Jr EH and de Sauvage FJ . (1998). Nature, 391, 90–92.

  • Zeng X, Goetz JA, Suber LM, Scott Jr WJ, Schreiner CM and Robbins DJ . (2001). Nature, 411, 716–720.

  • Zhang H, Ping XL, Lee PK, Wu XL, Yao YJ, Zhang MJ, Silvers DN, Ratner D, Malhotra R, Peacocke M and Tsou HC . (2001). Am. J. Pathol., 158, 381–385.

Download references

Acknowledgements

We thank Genentech Inc. for providing the Gli1-luciferase reporter construct, J Ming and MP Scott for providing the Myc-tagged ptc1 construct, AN Meyer and members of the Donoghue lab for critical review of the manuscript and LJ Castrejon for editorial assistance. This work was supported by NIH Grant T32-CA09523 and NIH Grant GM65490. DNA sequencing was performed by the UCSD Cancer Center, DNA Sequencing Shared Resource, funded in part by NCI Cancer Center Support Grant #2 P30 CA23100-18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J Donoghue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, E., Heidtman, K. & Donoghue, D. Constitutive activation of the shh–ptc1 pathway by a patched1 mutation identified in BCC. Oncogene 24, 902–915 (2005). https://doi.org/10.1038/sj.onc.1208240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208240

Keywords

This article is cited by

Search

Quick links