Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Human Bcl-2 activates ERK signaling pathway to regulate activating protein-1, lens epithelium-derived growth factor and downstream genes

Abstract

The proto-oncogene, bcl-2, has various functions besides its role in protecting cells from apoptosis. One of the functions is to regulate expression of other genes. Previous studies have demonstrated that Bcl-2 regulates activities of several important transcription factors including NF-κB and p53, and also their downstream genes. In our recent studies, we reported that Bcl-2 substantially downregulates expression of the endogenous αB-crystallin gene through modulating the transcriptional activity of lens epithelium-derived growth factor (LEDGF). In the present communication, we report that human Bcl-2 can positively regulate expression of the proto-oncogenes c-jun and c-fos. Moreover, it enhances the DNA binding activity and transactivity of the activating protein-1 (AP-1). Furthermore, we present evidence to show that Bcl-2 can also activate both ERK1 and ERK2 MAP kinases. Inhibition of the activities of these kinases or the upstream activating kinases by pharmacological inhibitors or dominant-negative mutants abolishes the Bcl-2-mediated regulation of AP-1, LEDGF and their downstream genes. Together, our results demonstrate that through activation of the ERK kinase signaling pathway, Bcl-2 regulates the transcriptional activities of multiple transcription factors, and hence modulates the expression of their downstream genes. Thus, our results provide a mechanism to explain how Bcl-2 may regulate expression of other genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Angel P and Karin M . (1991). Biochim. Biophys. Acta, 1072, 129–157.

  • Bohmann D, Bos TJ, Admon A, Nishimura T, Vogt PK and Tjian R . (1987). Science, 238, 1386–1392.

  • Casalino L, De Cesare D and Verde P . (2003). Mol. Cell. Biol., 23, 4401–4415.

  • Chen DB and Davis JS . (2003). Mol. Cell. Endocrinol., 200, 141–154.

  • Curran T and Franza Jr BR . (1988). Cell, 55, 395–397.

  • Curran T, Gordon MB, Rubino KL and Sambucetti LC . (1987). Oncogene, 2, 79–84.

  • de Moissac D, Mustapha S, Greenberg AH and Kirshenbaum LA . (1998). J. Biol. Chem., 273, 23946–23951.

  • Dhawan P and Richmond A . (2002). J. Biol. Chem., 277, 7920–7928.

  • El-Deiry WS . (2003). Oncogene, 22, 7486–7495.

  • Fatma N, Singh DP, Shinohara T and Chylack Jr LT . (2001). J. Biol. Chem., 276, 48899–48907.

  • Feng L, Balakir R, Precht P and Horton Jr WE . (1999). J. Cell. Biochem., 74, 576–586.

  • Froesch BA, Aime-Sempe C, LeberB, Andrews D and Reed JC . (1999). J. Biol. Chem., 274, 6469–6475.

  • Fuhlbrigge RC, Fine SM, Unanue ER and Chaplin DD . (1988). Proc. Natl. Acad. Sci. USA, 85, 5649–5653.

  • Gross A, McDonnell JM and Korsmeyer SJ . (1999). Genes Dev., 13, 1899–1911.

  • Gruda MC, Kovary K, Metz R and Bravo R . (1994). Oncogene, 9, 2537–2547.

  • Hilton M, Middleton G and Davies AM . (1997). Curr. Biol., 7, 798–800.

  • Hockenbery D, Nunez G, Milliman C, Schreiber RD and Korsmeyer SJ . (1990). Nature, 348, 334–336.

  • Hunter T and Karin M . (1992). Cell, 70, 375–387.

  • Jiang B, Xu S, Hou X, Pimentel DR, Brecher P and Cohen RA . (2004). J. Biol. Chem., 279, 1323–1329.

  • Johnson PF and McKnight SL . (1989). Annu. Rev. Biochem., 58, 799–839.

  • Karin M . (1995). J. Biol. Chem., 270, 16483–16486.

  • Kerppola TK and Curran T . (1991). Curr. Opin. Struct. Biol., 1, 71–79.

  • Korsmeyer SJ . (1992). Blood, 80, 879–886.

  • Kubo E, Fatma N, Sharma P, Shinohara T, Chylack Jr LT, Akagi Y and Singh DP . (2002). J. Mol. Biol., 320, 1053–1063.

  • Kukushkin AN, Abramova MV, Svetlikova SB, Darieva ZA, Pospelova TV and Pospelov VA . (2002). Oncogene, 21, 719–730.

  • Kumar NV and Bernstein LR . (2001). J. Biol. Chem., 276, 32362–32372.

  • Kyriakis JM and Avruch J . (2001). Physiol. Rev., 81, 807–869.

  • Li DW-C, Fass U, Huizar I and Spector A . (1998). Eur. J. Biochem., 257, 351–361.

  • Li DW-C, Liu J-P, Wang J, Mao Y-W and Hou L-H . (2003). Invest. Ophthalmol. Vis. Sci., 44, 5277–5286.

  • Li DW-C and Spector A . (1997). Mol. Cell. Biochem., 173, 59–69.

  • Li DW-C, Xiang H, Fass U and Zhang X-Y . (2001a). Invest. Ophthalmol. Vis. Sci., 42, 2603–2609.

  • Li DW-C, Xiang H, Mao Y-W, Wang J, Fass U, Zhang X-Y and Xu C . (2001b). Exp. Cell Res., 266, 279–291.

  • Li N and Karin M . (1999). FASEB J., 13, 1137–1143.

  • Li W-C, Kuszak JR, Dunn K, Wang R-R, Ma W-C, Wang G-M, Spector A, Leib M, Cotliar AM, Weiss M, Espy J, Howard G, Farris RL, Auran J, Donn A, Hofeldt A, Mackay C, Merriam J, Mittl R and Smith TR . (1995). J. Cell Biol., 130, 169–181.

  • Li W-C, Wang G-M, Wang R-R and Spector A . (1994). Exp. Eye Res., 59, 179–190.

  • Lu PJ, Lu QL, Rughetti A and Taylor-Papadimitriou J . (1995). J. Cell Biol., 129, 1363–1378.

  • Macgregor PF, Abate C and Curran T . (1990). Oncogene, 5, 451–458.

  • Mao Y-W, Xiang H, Wang W, Korsmeyer SJ, Reddan J and Li DW-C . (2001). J. Biol. Chem., 278, 43435–43445.

  • McDermott JB, Cvekl A and Piatigorsky J . (1997). Invest. Ophthalmol. Vis. Sci., 38, 951–959.

  • Mischak H, Seitz T, Janosch P, Eulitz M, Steen H, Schellerer M, Philipp A and Kolch W . (1996). Mol. Cell. Biol., 16, 5409–5418.

  • Miyashita T, Kitada S, Krajewski S, Horne WA, Delia D and Reed JC . (1995). J. Biol. Chem., 270, 26049–26052.

  • Monje P, Marinissen MJ and Gutkind JS . (2003). Mol. Cell. Biol., 23, 7030–7043.

  • Nieson DA, Chou J, MacKrell AJ, Casadaban MJ and Steiner DF . (1983). Proc. Natl. Acad. Sci. USA, 80, 5198–5202.

  • O'Reilly LA, Harris AW and Strasser A . (1997). Int. Immunol., 9, 1291–1301.

  • Persons DL, Yazlovitskaya EM and Pelling JC . (2000). J. Biol. Chem., 275, 35778–35785.

  • Reddan JR, Cheplinsky AB, Dziedzic DC, Piatigorsky J and Goldenberg EM . (1986). Differentiation, 33, 168–174.

  • Reed JC . (1994). J. Cell Biol., 124, 1–6.

  • Ricca A, Biroccio A, Del Bufalo D, Mackay AR, Santoni A and Cippitelli M . (2000). Int. J. Cancer, 86, 188–196.

  • Rosenberger SF, Finch JS, Gupta A and Bowden GT . (1999). J. Biol. Chem., 274, 1124–1130.

  • Rosen LB, Ginty DD, Weber MJ and Greenberg ME . (1994). Neuron, 12, 1207–1221.

  • Sablina AA, Chumakov PM, Levine AJ and Kopnin BP . (2001). Oncogene, 20, 899–909.

  • Schwarz CS, Seyfried J, Evert BO, Klockgether T and Wullner U . (2002). NeuroReport, 13, 2439–2442.

  • Shinohara T, Singh DP and Fatma N . (2002). Prog. Retin. Eye Res., 21, 341–358.

  • Singh DP, Fatma N, Kimura A, Chylack Jr LT and Shinohara T . (2001). Biochem. Biophys. Res. Commun., 283, 943–955.

  • Tso JY, Sun XH, Kao TH, Reece KS and Wu R . (1985). Nucleic Acids Res., 13, 2485–2502.

  • Tsujimoto Y, Cossman J, Jaffe E and Croce CM . (1985). Science, 228, 1440.

  • Vairo G, Soos TJ, Upton TM, Zalvide J, DeCaprio JA, Ewen ME, Koff A and Adams JM . (2000). Mol. Cell. Biol., 20, 4745–4753.

  • Vaux D, Cory A and Adams J . (1988). Nature, 335, 440.

  • Xiang H, Wang J, Mao Y-W and Li DW-C . (2000). Biochem. Biophys. Res. Commun., 278, 503–510.

  • Xiang H, Wang J, Mao Y-W, Liu M, Reddy V and Li DW-C . (2002). Oncogene, 21, 3784–3791.

  • Young MR, Nair R, Bucheimer N, Tulsian P, Brown N, Chapp C, Hsu TC and Colburn NH . (2002). Mol. Cell. Biol., 22, 587–598.

  • Yuan PX, Huang LD, Jiang YM, Gutkind JS, Manji HK and Chen G . (2001). J. Biol. Chem., 276, 31674–31683.

  • Yue J and Mulder KM . (2000). J. Biol. Chem., 275, 30765–30773.

  • Zhan Q, Kontny U, Iglesias M, Alamo Jr I, Yu K, Hollander MC, Woodworth CD and Fornace Jr AJ . (1999). Oncogene, 18, 297–304.

Download references

Acknowledgements

We thank Dr Stanley Korsmeyer for the human Bcl-2 expression construct, Dr Tom Curran for the rat c-jun and c-fos cDNA clones, Dr Meng-Sheng Qiu for the GAPDH cDNA, Dr John Westwick for the luciferase reporter gene expression construct, Dr John Reddan for the RLECs (N/N1003A) and Dr Joram Piatigorsky for the chicken βA3/A1-CAT and pRSV-β-galactosidase expression constructs. This work was partially supported by NIH/NEI 11372, the Hormel Foundation, University of Minnesota Graduate School, and the Lotus Scholar Program Funds from Hunan Province Government and Hunan Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Wan-Cheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, H., Xiang, H., Mao, YW. et al. Human Bcl-2 activates ERK signaling pathway to regulate activating protein-1, lens epithelium-derived growth factor and downstream genes. Oncogene 23, 7310–7321 (2004). https://doi.org/10.1038/sj.onc.1208041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208041

Keywords

This article is cited by

Search

Quick links