Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The regulation of CHK2 in human cancer

Abstract

Exceptional progress has been made in the past two decades in mapping oncogenes and tumour suppressors, defining a function for these master switches, and identifying novel anti-cancer drug targets. The p53 tumour suppressor is a central component of a DNA-damage-inducible pathway controlled by the ataxia telangiectasia mutated (ATM) and CHK2 protein kinases that have a central role in cancer suppression. One limitation of current human cancer research is the difficulty in developing genetic models that reveal the post-translational regulation of a growth suppressor like CHK2 within the microenvironment of a human tumour. Gaining such insights is important since yeast models and human tissue culture cell lines do not necessarily predict how enzymes like CHK2 are regulated in vivo, and therefore what factors can affect CHK2 tumour suppressor function. Translational cancer research aims to link basic research methodologies and clinical biology by uncovering cancer-specific pathways not revealed by other approaches. This approach is exemplified by two studies in this edition of Oncogene: both use a set of well-characterized human cancers with the objective of identifying novel post-translational control of the tumour suppressor CHK2. The authors have revealed two unexpected epigenetic modifications of the CHK2 pathway in vivo: (1) constitutive phosphorylation of CHK2 at its ATM-activated site in the absence of exogenous DNA damage; and (2) the production of hyper-spliced and inactive isoforms of CHK2. These studies highlight the need to develop model systems to understand why CHK2-activating pathways are being triggered or suppressed in different human cancers and whether the splicing machinery can be manipulated to control the activity of CHK2 for therapeutic benefit.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  • Abdu U, Brodsky M and Schupbach T . (2002). Curr. Biol., 12, 1645–1651.

  • Ahn JY, Li X, Davis HL and Canman CE . (2002). J. Biol. Chem., 277, 19389–19395.

  • Andegeko Y, Moyal L, Mittelman L, Tsarfaty I, Shiloh Y and Rotman G . (2001). J. Biol. Chem., 276, 38224–38230.

  • Bakkenist CJ and Kastan MB . (2003). Nature, 421, 486–488.

  • Bartek J and Lukas J . (2003). Cancer Cell, 3, 421–429.

  • Bartel F, Harris LC, Wurl P and Taubert H . (2004). Mol. Cancer Res., 2, 29–35.

  • Bartel F, Taubert H and Harris LC . (2002). Cancer Cell, 2, 9–15.

  • Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ, Fraumeni JF, Birch JM, Li FP, Garber JE and Haber DA . (1999). Science, 286, 2528–2531.

  • Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG, Rio DC and Rubin GM . (2004). Mol. Cell. Biol., 24, 1219–1231.

  • Carney J, Maser R, Olivares H, Davis E, Le Beau M, Yates J, Hays L, Morgan W and Petrini J . (1998). Cell, 93, 477–486.

  • Castedo M, Perfettini JL, Roumier T, Valent A, Raslova H, Yakushijin K, Horne D, Feunteun J, Lenoir G, Medema R, Vainchenker W and Kroemer G . (2004). Oncogene, 23, 4362–4370.

  • Chen P, Luo C, Deng Y, Ryan K, Register J, Margosiak S, Tempczyk-Russell A, Nguyen B, Myers P, Lundgren K, Kan CC and O'Connor PM . (2000). Cell, 100, 681–692.

  • Craig A, Burch L, Vojtesek B, Mikutowska M, Thompson A and Hupp T . (1999). Biochem. J., 342, 133–141.

  • Craig A, Scott M, Burch L, Smith G, Ball K and Hupp T . (2003). EMBO Rep., 4, 787–792.

  • DiTullio Jr RA, Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J and Halazonetis TD . (2002). Nat. Cell Biol., 4, 998–1002.

  • Dornan D and Hupp TR . (2001). EMBO Rep., 2, 139–144.

  • Dornan D, Shimizu H, Burch L, Smith AJ and Hupp TR . (2003). Mol. Cell. Biol., 23, 8846–8861.

  • Evans SC, Viswanathan M, Grier JD, Narayana M, El-Naggar AK and Lozano G . (2001). Oncogene, 20, 4041–4049.

  • Fabbro M, Savage KI, Hobson K, Deans AJ, Powell SN, McArthur GA and Khanna KK . (2004). J. Biol. Chem. May 24 (Epub ahead of print).

  • Falck J, Lukas C, Protopopova M, Lukas J, Selivanova G and Bartek J . (2001a). Oncogene, 20, 5503–5510.

  • Falck J, Mailand N, Syljuasen RG, Bartek J and Lukas J . (2001b). Nature, 410, 842–847.

  • Fridman JS, Hernando E, Hemann MT, de Stanchina E, Cordon-Cardo C and Lowe SW . (2003). Cancer Res., 63, 5703–5706.

  • Higashitani A, Aoki H, Mori A, Sasagawa Y, Takanami T and Takahashi H . (2000). FEBS Lett., 485, 35–39.

  • Hirao A, Cheung A, Duncan G, Girard PM, Elia AJ, Wakeham A, Okada H, Sarkissian T, Wong JA, Sakai T, De Stanchina E, Bristow RG, Suda T, Lowe SW, Jeggo PA, Elledge SJ and Mak TW . (2002). Mol. Cell. Biol., 22, 6521–6532.

  • Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ and Mak TW . (2000). Science, 287, 1824–1827.

  • Jack MT, Woo RA, Hirao A, Cheung A, Mak TW and Lee PW . (2002). Proc. Natl. Acad. Sci. USA, 99, 9825–9829.

  • Kim WS, Son HJ, Park JO, Song SY and Park C . (2003). Int. J. Mol. Med., 12, 827–830.

  • Koslowski M, Tureci O, Bell C, Krause P, Lehr HA, Brunner J, Seitz G, Nestle FO, Huber C and Sahin U . (2002). Cancer Res., 62, 6750–6755.

  • Lee CH and Chung JH . (2001). J. Biol. Chem., 276, 30537–30541.

  • Lee JH and Paull TT . (2004). Science, 304, 93–96.

  • Li J, Williams BL, Haire LF, Goldberg M, Wilker E, Durocher D, Yaffe MB, Jackson SP and Smerdon SJ . (2002). Mol. Cell, 9, 1045–1054.

  • Lukas C, Falck J, Bartkova J, Bartek J and Lukas J . (2003). Nat. Cell Biol., 5, 255–260.

  • Matsuoka S, Huang M and Elledge SJ . (1998). Science, 282, 1893–1897.

  • Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K and Elledge SJ . (2000). Proc. Natl. Acad. Sci. USA, 97, 10389–10394.

  • Melchionna R, Chen XB, Blasina A and McGowan CH . (2000). Nat. Cell Biol., 2, 762–765.

  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett ML, Ding W, Bell R, Rosenthal J, Hussey C, Tran T, McClure M, Frye C, Hattier T, Phelps R, Haugen-Strano A, Katcher H, Yakumo K, Gholami Z, Shaffer D, Stone S, Bayer S, Wray C, Bogden R, Dayananth P, Ward J, Tonin P, Narod S, Bristow PK, Norris FH, Helvering L, Morrison P, Rosteck P, Lai M, Barrett JC, Lewis C, Neuhausen FH, Cannon-Albright L, Goldgar D, Wiseman R, Kamb A and Skolnick MH . (1994). Science, 266, 66–71.

  • O'Neill T, Giarratani L, Chen P, Iyer L, Lee CH, Bobiak M, Kanai F, Zhou BB, Chung JH and Rathbun GA . (2002). J. Biol. Chem., 277, 16102–16115.

  • Pohler L, Craig AL, Cotton J, Lawrie L, Dillon JF, Ross P, Kernohan N and Hupp TR . (2004). Mol. Cell Proteomics, 3, 534–547.

  • Rhind N and Russell P . (2000). J. Cell Sci., 113 (Part 22), 3889–3896.

  • Rocco JW and Sidransky D . (2001). Exp. Cell Res., 264, 42–55.

  • Rogoff HA, Pickering MT, Frame FM, Debatis ME, Sanchez Y, Jones S and Kowalik TF . (2004). Mol. Cell. Biol., 24, 2968–2977.

  • Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B and Elledge SJ . (1996). Science, 271, 357–360.

  • Seo GJ, Kim SE, Lee YM, Lee JW, Lee JR, Hahn MJ and Kim ST . (2003). Biochem. Biophys. Res. Commun., 304, 339–343.

  • Steinman HA, Burstein E, Lengner C, Gosselin J, Pihan G, Duckett CS and Jones SN . (2004). J. Biol. Chem., 279, 4877–4886.

  • Stevens C, Smith L and LaThangue NB . (2003). Nat. Cell Biol., 5, 401–409.

  • Sullivan A, Yuille M, Repellin C, Reddy A, Reelfs O, Bell A, Dunne B, Gusterson BA, Osin P, Farrell PJ, Yulug I, Evans A, Ozcelik T, Gasco M and Crook T . (2002). Oncogene, 21, 1316–1324.

  • Takai H, Naka K, Okada Y, Watanabe M, Harada N, Saito S, Anderson CW, Appella E, Nakanishi M, Suzuki H, Nagashima K, Sawa H, Ikeda K and Motoyama N . (2002). EMBO J., 21, 5195–5205.

  • Tereshko V, Teplova M, Brunzelle J, Watterson DM and Egli M . (2001). Nat. Struct. Biol., 8, 899–907.

  • Theard D, Coisy M, Ducommun B, Concannon P and Darbon JM . (2001). Biochem. Biophys. Res. Commun., 289, 1199–1204.

  • Tyler LN, Ai L, Zuo C, Fan CY and Smoller BR . (2003). Mod. Pathol., 16, 660–664.

  • Vahteristo P, Bartkova J, Eerola H, Syrjakoski K, Ojala S, Kilpivaara O, Tamminen A, Kononen J, Aittomaki K, Heikkila P, Holli K, Blomqvist C, Bartek J, Kallioniemi OP and Nevanlinna H . (2002). Am. J. Hum. Genet., 71, 432–438.

  • Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ and Qin J . (2000). Genes Dev., 14, 927–939.

  • Ward IM, Wu X and Chen J . (2001). J. Biol. Chem., 276, 47755–47758.

  • Wu X, Webster SR and Chen J . (2001). J. Biol. Chem., 276, 2971–2974.

  • Xu X, Tsvetkov LM and Stern DF . (2002). Mol. Cell. Biol., 22, 4419–4432.

  • Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, Chung JH, Powell SN and Xia F . (2004a). Mol. Cell. Biol., 24, 708–718.

  • Zhang P, Wang J, Gao W, Yuan BZ, Rogers JS and Reed E . (2004b). Mol. Cancer, 3, 14.

  • Zindy F, Williams RT, Baudino TA, Rehg JE, Skapek SX, Cleveland JL, Roussel MF and Sherr CJ . (2004). Proc. Natl. Acad. Sci. USA, 100, 15930–15935.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted R Hupp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, A., Hupp, T. The regulation of CHK2 in human cancer. Oncogene 23, 8411–8418 (2004). https://doi.org/10.1038/sj.onc.1208035

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208035

Keywords

This article is cited by

Search

Quick links