Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis

Abstract

The mitochondrial permeability transition pore complex (PTPC) is involved in the control of the mitochondrial membrane permeabilization during apoptosis, necrosis and autophagy. Indeed, the adenine nucleotide translocator (ANT) and the voltage-dependent anion channel (VDAC), two major components of PTPC, are the targets of a variety of proapoptotic inducers. Using co-immunoprecipitation and proteomic analysis, we identified some of the interacting partners of ANT in several normal tissues and human cancer cell lines. During chemotherapy-induced apoptosis, some of these interactions were constant (e.g. ANT-VDAC), whereas others changed strongly concomitantly with the dissipation of the mitochondrial transmembrane potential and until nuclear degradation occurred (e.g. Bax, Bcl-2, subunits of the respiratory chain, a subunit of the phosphatase PP2A, phospholipase PLC β 4 and IP3 receptor). In addition, a glutathione-S-transferase (GST) interacts with ANT in normal tissue, in colon carcinoma cells and in vitro. This interaction is lost during apoptosis induction, suggesting that GST behaves as an endogenous repressor of PTPC and ANT pore opening. Thus, ANT is connected to mitochondrial proteins as well as to proteins from other organelles such as the endoplasmic reticulum forming a dynamic polyprotein complex. Changes within this ANT interactome coordinate the lethal response of cells to apoptosis induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ANT:

adenine nucleotide translocator

ARS:

arsenic trioxide

Atr:

atractyloside

cytochrome c:

Cyt c

DiOC6(3):

3,3′ dihexyloxacarbocyanine iodide

ΔΨm:

mitochondrial transmembrane potential

Etop:

etoposide

HE:

hydroethidine

HK:

hexokinase

LND:

lonidamine

MLP:

melphalan

MMP:

mitochondrial membrane permeabilization

MPT:

mitochondrial permeability transition

MUP:

4-methylumbelliferyl phosphate

IM:

inner membrane

OM:

outer membrane

PI:

propidium iodide

ROS:

reactive oxygen species

PTPC:

permeability transition pore complex

PBR:

peripheral benzodiazepine receptor

GSH:

glutathione

GST:

glutathione-S-transferase

STS:

staurosporine

VDAC:

voltage-dependent anion channel

References

  • Adler V, Yin Z, Fuchs S, Benezra M, Rosario L, Tew K, Pincus M, Sardana M, Henderson C, Wolf C, Davis R and Ronai Z . (1999). EMBO J., 18, 1321–1334.

  • Armstrong JS and Jones DP . (2002). FASEB J., 7, 7–12.

  • Belzacq AS and Brenner C . (2004). Curr. Drug Target, 4, 517–524.

  • Belzacq AS, El Hamel C, Vieira HL, Cohen I, Haouzi D, Metivier D, Marchetti P, Brenner C and Kroemer G . (2001). Oncogene, 20, 7579–7587.

  • Belzacq AS, Vieira HL, Verrier F, Vandecasteele G, Cohen I, Prevost MC, Larquet E, Pariselli F, Petit PX, Kahn A, Rizzuto R, Brenner C and Kroemer G . (2003). Cancer Res., 63, 541–546.

  • Bernardi P, Colonna R, Costantini P, Eriksson O, Fontaine E, Ichas F, Massari S, Nicolli A, Petronilli V and Scorrano L . (1998). Biofactors, 8, 273–281.

  • Beutner G, Rück A, Riede B, Welte W and Brdiczka D . (1996). FEBS Lett., 396, 189–195.

  • Bottero V, Rossi F, Samson M, Mari M, Hofman P and Peyron J . (2001). J. Biol. Chem., 276, 21317–21324.

  • Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, Leber B, Andrews D, Duclohier H, Reed JC and Kroemer G . (2000a). Oncogene, 19, 329–336.

  • Brenner C and Kroemer G . (2000). Science, 289, 1150–1151.

  • Brenner C, Le Bras M and Kroemer G . (2003). J. Clin. Immunol., 23, 73–80.

  • Brenner C, Marzo I, de Araujo Vieira HL and Kroemer G . (2000b). Methods Enzymol., 322, 243–252.

  • Bribes E, Galiegue S, Bourrie B and Casellas P . (2003). Immunol. Lett., 85, 13–18.

  • Cao G, Minami M, Pei W, Yan C, Chen D, O'Horo C, Graham SH and Chen J . (2001). J. Cereb. Blood Flow Metab., 21, 321–333.

  • Capano M and Crompton M . (2002). Biochem. J., 367, 169–178.

  • Castedo M, Roumier T, Blanco J, Ferri K, Barretina J, Tintignac L, Andreau K, Perfettini J, Amendola A, Nardacci R, Leduc P, Ingber D, Druillennec S, Roques B, Leibovitch S, Vilella-Bach M, Chen J, Este J, Modjtahedi N, Piacentini M and Kroemer G . (2002). EMBO J., 21, 4070–4080.

  • Cheng E, Sheiko T, Fisher J, Craigen W and Korsmeyer S . (2003). Science, 301, 513–517.

  • Crompton M . (1999). Biochem. J., 341, 233–249.

  • Crompton M . (2000). Curr. Opin. Cell Biol., 12, 414–419.

  • Crompton M, Barksby E, Johnson N and Capano M . (2002). Biochimie., 84, 143–152.

  • Danial N, Gramm C, Scorrano L, Zhang C, Krauss S, Ranger A, Datta S, Greenberg M, Licklide L, Lowell BB, Gygi S and Korsmeyer S . (2003). Nature, 424, 952–956.

  • De Giorgi F, Lartigue L, Bauer M, Schubert A, Grimm S, Hanson G, Remington S, Youle R and Ichas F . (2002). FASEB J., 16, 607–609.

  • Denis G, Yu Q, Ma P, Deeds L, Faller D and Chen C . (2003). J. Biol. Chem., 278, 5775–5785.

  • Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B and Martinou JC . (1999). J. Cell Biol., 144, 891–901.

  • Dorner A, Schulze K, Rauch U and Schultheiss HP . (1997). Mol. Cell Biochem., 174, 261–269.

  • Dulhunty A, Gage P, Curtis S, Chelvanayagam G and Board P . (2001). J. Biol. Chem., 276, 3319–3323.

  • Elmore S, Ian T, Grissom S and Lemasters J . (2001). FASEB J., 15, 2286–2287.

  • Friberg H and Wieloch T . (2002). Biochimie, 84, 241–250.

  • Gardner J and Gallagher E . (2001). Arch. Biochem. Biophys., 390, 19–27.

  • Gilot D, Loyer P, Corlu A, Glaise D, Lagadic-Gossmann D, Atfi A, Morel F, Ichijo H and Guguen-Guillouzo C . (2002). J. Biol. Chem., 277, 49220–49229.

  • Gottlieb E, Armour S, Harris M and Thompson C . (2003). Cell Death Differ., 10, 709–717.

  • Gunter T and Pfeiffer D . (1990). Am. J. Physiol., 258, C755–C786.

  • Hajnoczky G, Csordas G, Krishnamurthy R and Szalai G . (2000). J. Bioenerg. Biomembr., 32, 15–25.

  • Halestrap A and Brenner C . (2003). Curr. Med. Chem., 10, 1507–1525.

  • Halestrap AP, McStay GP and Clarke SJ . (2002). Biochimie, 84, 153–166.

  • Halestrap AP, Woodfield KY and Connern CP . (1997). J. Biol. Chem., 272, 3346–3354.

  • Hande K . (1998). Eur. J. Cancer, 34, 1514–1521.

  • Haouzi D, Cohen I, Vieira H, Poncet D, Boya P, Castedo M, Vadrot N, Belzacq A, Fau D, Brenner C, Feldmann G and Kroemer G . (2002). Apoptosis, 7, 395–405.

  • Haouzi D, Lekehal M, Tinel M, Vadrot N, Caussanel L, Letteron P, Moreau A, Feldmann G and Fau DPessayre D . (2001). Hepatology, 33, 1181–1188.

  • Hayes J and Pulford D . (1995). Crit. Rev. Biochem. Mol. Biol., 30, 445–600.

  • Ichas F, Jouaville L and Mazat J . (1997). Cell, 89, 1145–1153.

  • Ichas F and Mazat JP . (1998). Biochim. Biophys. Acta, 1366, 33–50.

  • Jan G, Belzacq AS, Haouzi D, Rouault A, Metivier D, Kroemer G and Brenner C . (2002). Cell Death Differ., 9, 179–188.

  • Jouaville LS, Ichas F and Mazat JP . (1998). Mol. Cell. Biochem., 184, 371–376.

  • Karpinich NO, Tafani M, Rothman RJ, Russo MA and Farber JL . (2002). J. Biol. Chem., 277, 16547–16552.

  • Kroemer G and Reed J . (2000). Nat. Med., 6, 513–519.

  • Kroemer G, Zamzami N and Susin SA . (1997). Immunol. Today, 18, 44–51.

  • Laemmli UK . (1970). Nature, 227, 680–685.

  • Larochette N, Decaudin D, Jacotot E, Brenner C, Marzo I, Susin SA, Zamzami N, Xie Z, Reed J and Kroemer G . (1999). Exp. Cell Res., 249, 413–421.

  • Lemasters J, Nieminen A, Qian T, Trost L and Herman B . (1997). Mol. Cell. Biochem., 174, 159–165.

  • Li H, Kolluri SK, Gu J, Dawson MI, Cao X, Hobbs PD, Lin B, Chen G, Lu J, Lin F, Xie Z, Fontana JA, Reed JC and Zhang X . (2000). Science, 289, 1159–1164.

  • Majumder PK, Pandey P, Sun X, Cheng K, Datta R, Saxena S, Kharbanda S and Kufe D . (2001). J. Biol. Chem., 12, 465–470.

  • Marchenko ND, Zaika A and Moll UM . (2000). J. Biol. Chem., 275, 16202–16212.

  • Martinou JC, Desagher S and Antonsson B . (2000). Nat. Cell Biol., 2, E41–43.

  • Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC and Kroemer G . (1998b). Science, 281, 2027–2031.

  • Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC and Kroemer G . (1998a). J. Exp. Med., 187, 1261–1271.

  • McEnery M, Snowman A, Trifiletti R and Snyder SH . (1992). Proc. Natl. Acad. Sci. USA, 89, 3170–3174.

  • Murga C, Zohar M, Teramoto H and Gutkind J . (2002). Oncogene, 21, 207–216.

  • Ott M, Robertson JD, Gogvadze V, Zhivotovsky B and Orrenius S . (2002). Proc. Natl. Acad. Sci. USA, 99, 1259–1263.

  • Ravagnan L, Marzo I, Costantini P, Susin SA, Zamzami N, Petit PX, Hirsch F, Goulbern M, Poupon MF, Miccoli L, Xie Z, Reed JC and Kroemer G . (1999). Oncogene, 18, 2537–2546.

  • Reddy R, Mao C, Baumeister P, Austin R, Kaufman R and Lee A . (2003). J. Biol. Chem., 278, 20915–20924.

  • Reed J and Green D . (2002). Mol. Cell., 9, 1–3.

  • Reed JC, Jurgensmeier JM and Matsuyama S . (1998). Biochim. Biophys. Acta, 1366, 127–137.

  • Robertson J, Gogvadze V, Zhivotovsky B and Orrenius S . (2000). J. Biol. Chem., 275, 32438–32443.

  • Shimizu S, Ide T, Yanagida T and Tsujimoto Y . (2000a). J. Biol. Chem., 275, 12321–12325.

  • Shimizu S, Konishi A, Kodama T and Tsujimoto Y . (2000b). Proc. Natl. Acad. Sci. USA, 97, 3100–3105.

  • Shimizu S, Narita M and Tsujimoto Y . (1999). Nature, 399, 483–487.

  • Susin SA, Larochette N, Geuskens M and Kroemer G . (2000). Methods Enzymol., 322, 205–208.

  • Szabo I, Bernardi P and Zoratti M . (1992). J. Biol. Chem., 267, 2940–2946.

  • Szabo I and Zoratti M . (1992). J. Bioenerg. Biomembr., 24, 111–117.

  • Woodfield K, Ruck A, Brdiczka D and Halestrap AP . (1998). Biochem. J., 336, 287–290.

  • Yin Z, Ivanov V, Habelhah H, Tew K and Ronai Z . (2000). Cancer Res., 60, 4053–4057.

  • Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssière J-L, Petit PX and Kroemer G . (1995). J. Exp. Med., 181, 1661–1672.

  • Zoratti M and Szabo I . (1994). J. Bioenerg. Biomembr., 26, 543–553.

Download references

Acknowledgements

We thank Dr D Haouzi for helpful discussion and C Henry for her help in mass spectrometry analysis. This work is supported by grants from l'Association pour la Recherche sur le Cancer (ARC), la Fondation pour la Recherche Médicale (FRM), the Ministère délégué à la Recherche et aux Nouvelles Technologies (MRNT) to CB, a special grant by the Ligue contre le Cancer to GK and from INRA, Institut National de la Recherche Agronomique to GJ. FV and AD were supported by fellowships from the MRNT. MLB receives a postdoctoral fellowship from the Centre National de la Recherche Scientifique (CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Brenner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verrier, F., Deniaud, A., LeBras, M. et al. Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis. Oncogene 23, 8049–8064 (2004). https://doi.org/10.1038/sj.onc.1208001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208001

Keywords

This article is cited by

Search

Quick links