Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

CAS promotes invasiveness of Src-transformed cells

Abstract

CAS (‘Crk-associated substrate’) is an Src substrate found at sites of integrin-mediated cell adhesion and linked to cell motility and survival. In this study, the involvement of CAS in oncogenic transformation was evaluated through analysis of mouse embryo fibroblast populations expressing an activated Src mutant, either in the presence or absence of CAS expression. CAS was not found to be a critical determinant of either Src-mediated morphologic transformation or anchorage-independent growth. However, CAS had a profound effect on other aspects of oncogenic Src function. CAS expression led to a substantial increase in the phosphotyrosine content of FAK and paxillin, supporting a role for CAS as a positive regulator of Src activity at integrin adhesion sites. Importantly, CAS expression resulted in a striking enhancement of the capacity of Src-transformed cells to invade through Matrigel. The increased invasiveness was associated with increased activation of matrix metalloproteinase MMP-2 and formation of large actin-rich podosomal aggregates appearing as ring and belt structures. Thus, elevated CAS-associated tyrosine phosphorylation signaling events occurring at sites of integrin-mediated cell adhesion can have a major role in the development of an invasive cell phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abram CL, Seals DF, Pass I, Salinsky D, Maurer L, Roth TM and Courtneidge SA . (2003). J. Biol. Chem., 278, 16844–16851.

  • Brábek J, Mojzita D, Novotny M, Puta F and Folk P . (2002). Biochem. Biophys. Res. Commun., 296, 664–670.

  • Burnham MR, Bruce-Staskal PJ, Harte MT, Weidow CL, Ma A, Weed SA and Bouton AH . (2000). Mol. Cell. Biol., 20, 5865–5878.

  • Chen WT . (1989). J. Exp. Zool., 251, 167–185.

  • Chen WT, Chen JM, Parsons SJ and Parsons JT . (1985). Nature, 316, 156–158.

  • Chen WT and Wang JY . (1999). Ann. NY Acad. Sci., 878, 361–371.

  • Chen WT, Yeh Y and Nakahara H . (1994). J. Tissue Culture Methods, 16, 177–181.

  • Cho SY and Klemke RL . (2000). J. Cell. Biol., 149, 223–236.

  • Deryugina EI, Ratnikov B, Monosov E, Postnova TI, DiScipio R, Smith JW and Strongin AY . (2001). Exp. Cell Res., 263, 209–223.

  • Fonseca PM, Shin NY, Brabek J, Ryzhova L, Wu J and Hanks SK . (2004). Cell. Signal., 16, 621–629.

  • Frame MC, Fincham VJ, Carragher NO and Wyke JA . (2002). Nat. Rev. Mol. Cell. Biol., 3, 233–245.

  • Goldberg GS, Alexander DB, Pellicena P, Zhang ZY, Tsuda H and Miller WT . (2003). J. Biol. Chem., 278, 46533–46540.

  • Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE, Imamoto A and Thomas SM . (2002). Mol. Cell. Biol., 22, 901–915.

  • Hamaguchi M, Yamagata S, Thant AA, Xiao H, Iwata H, Mazaki T and Hanafusa H . (1995). Oncogene, 10, 1037–1043.

  • Hauck CR, Hsia DA, Puente XS, Cheresh DA and Schlaepfer DD . (2002). EMBO J., 21, 6289–6302.

  • Honda H, Nakamoto T, Sakai R and Hirai H . (1999). Biochem. Biophys. Res. Commun., 262, 25–30.

  • Honda H, Oda H, Nakamoto T, Honda Z, Sakai R, Suzuki T, Saito T, Nakamura K, Nakao K, Ishikawa T, Katsuki M, Yazaki Y and Hirai H . (1998). Nat. Genet., 19, 361–365.

  • Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA and Schlaepfer DD . (2003). J. Cell. Biol., 160, 753–767.

  • Huang J, Hamasaki H, Nakamoto T, Honda H, Hirai H, Saito M, Takato T and Sakai R . (2002). J. Biol. Chem., 277, 27265–27272.

  • Ireton RC, Davis MA, van Hengel J, Mariner DJ, Barnes K, Thoreson MA, Anastasiadis PZ, Matrisian L, Bundy LM, Sealy L, Gilbert B, van Roy F and Reynolds AB . (2002). J. Cell Biol., 159, 465–476.

  • Kanner SB, Reynolds AB, Vines RR and Parsons JT . (1990). Proc. Natl. Acad. Sci. USA, 87, 3328–3332.

  • Kaverina I, Stradal TE and Gimona M . (2003). J. Cell. Sci., 116, 4915–4924.

  • Klemke RL, Leng J, Molander R, Brooks PC, Vuori K and Cheresh DA . (1998). J. Cell. Biol., 23, 961–972.

  • Klinghoffer RA, Sachsenmaier C, Cooper JA and Soriano P . (1999). EMBO J., 18, 2459–2471.

  • Linder S and Aepfelbacher M . (2003). Trends Cell Biol., 13, 376–385.

  • Martin GS . (2001). Nat. Rev. Mol. Cell. Biol., 2, 467–475.

  • Mayer BJ, Hamaguchi M and Hanafusa H . (1988). Nature, 332, 272–275.

  • Mizutani K, Miki H, He H, Maruta H and Takenawa T . (2002). Cancer Res., 62, 669–674.

  • Moissoglu K and Gelman IH . (2003). J. Biol. Chem., 278, 47946–47959.

  • Monsky WL, Kelly T, Lin CY, Yeh Y, Stetler-Stevenson WG, Mueller SC and Chen WT . (1993). Cancer Res., 53, 3159–3164.

  • Mueller SC and Chen WT . (1991). J. Cell Sci., 99, 213–225.

  • Nakamoto T, Sakai R, Ozawa K, Yazaki Y and Hirai H . (1996). J. Biol. Chem., 271, 8959–8965.

  • Pellicena P and Miller WT . (2001). J. Biol. Chem., 276, 28190–28196.

  • Polte TR and Hanks SK . (1997). J. Biol. Chem., 272, 5501–5509.

  • Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P and Gardner HA . (2000). Proc. Natl. Acad. Sci. USA, 97, 2202–2207.

  • Roy S, Ruest PJ and Hanks SK . (2002). J. Cell. Biochem., 84, 377–388.

  • Ruest PJ, Roy S, Shi E, Mernaugh RL and Hanks SK . (2000). Cell Growth Differ., 11, 41–48.

  • Ruest PJ, Shin NY, Polte TR, Zhang X and Hanks SK . (2001). Mol. Cell. Biol., 21, 7641–7652.

  • Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H, Yazaki Y and Hirai H . (1994). EMBO J., 13, 3748–3756.

  • Sakai R, Nakamoto T, Ozawa K, Aizawa S and Hirai H . (1997). Oncogene, 14, 1419–1426.

  • Schaller MD and Parsons JT . (1995). Mol. Cell. Biol., 15, 2635–2645.

  • Vincenti MP, Schroen DJ, Coon CI and Brinckerhoff CE . (1998). Mol Carcinog., 21, 194–204.

  • Vuori K, Hirai H, Aizawa S and Ruoslahti E . (1996). Mol. Cell. Biol., 16, 2606–2613.

  • Wu X, Suetsugu S, Cooper LA, Takenawa T and Guan JL . (2004). J. Biol. Chem., 279, 9565–9576.

Download references

Acknowledgements

We thank Hisamaru Hirai and Amy Bouton for providing CAS-deficient cells and Pranathi Matta for technical assistance. This work was primarily supported by NIH/NIGMS R01 GM49882 and NIH/NIDDK R01 DK56018 (to SKH). AP was supported by NIH/NCI R01 CA94849-01 and NIH/NIDDK O'Brien Center Grant P50 DK39261-16. The work also utilized the Cell Imaging Shared Resource, the Flow Cytometry Resource Center, and the DNA Sequencing core facilities supported by the Vanderbilt Diabetes Research Training Center, the Vanderbilt Digestive Disease Research Center, and the Vanderbilt-Ingram Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven K Hanks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brábek, J., Constancio, S., Shin, NY. et al. CAS promotes invasiveness of Src-transformed cells. Oncogene 23, 7406–7415 (2004). https://doi.org/10.1038/sj.onc.1207965

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207965

Keywords

This article is cited by

Search

Quick links