Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Nuclear localization of the adenovirus E4orf4 protein is mediated through an arginine-rich motif and correlates with cell death

A Corrigendum to this article was published on 09 June 2005

Abstract

The adenovirus E4orf4 protein induces p53-independent death of human cancer cells by a mechanism requiring interactions with the Bα subunit of protein phosphatase 2A. When expressed alone E4orf4 localizes predominantly in the nucleus, although significant levels are also present in the cytoplasm. While tyrosine phosphorylation of E4orf4 and recruitment of Src have been linked with E4orf4 cytoplasmic cell death functions, little is known about the functions of E4orf4 in the nucleus. In this study, we identified an arginine-rich motif (E4ARM; residues 66–75) that is necessary and sufficient for nuclear and nucleolar localization. This motif, which is highly homologous to the arginine-rich nuclear and nucleolar localization motif of some lentiviral proteins, was shown to target heterologous proteins to the nucleus and to nucleoli, functions found to be dependent on the overall charge of the motif rather than on specific residues. Furthermore, mutation of arginine residues to alanines but not to lysines in E4ARM was shown to block such targeting activity and, when introduced into full-length E4orf4, to decrease induction of cell death. Finally, coexpression of the ARM motifs of E4orf4, HIV-1 Tat or Rev along with full-length E4orf4 was seen to decrease E4orf4-dependent cell killing. Thus it appears that targeting of E4orf4 to the nucleus and cell nucleoli by E4ARM is an important component of E4orf4-induced cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

ARM:

arginine-rich motif

E4ARM:

adenovirus E4orf4 arginine-rich motif, residues 66–75

HIV-1:

human immunodeficiency virus 1

HTLV-1:

human T-cell leukemia virus 1

NoLS:

nucleolar localization signal

PK:

pyruvate kinase

PP2A:

protein phosphatase 2A

SV40 LT:

simian virus 40 large T antigen

RRNA:

ribosomal RNA

References

  • Afifi R, Sharf R, Shtrichman R and Kleinberger T . (2001). J. Virol., 75, 4444–4447.

  • Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M and Lamond AI . (2002). Curr. Biol., 12, 1–11.

  • Ben-Israel H and Kleinberger T . (2002). Front. Biosci., 7, d1369–d1395.

  • Branton PE and Roopchand DE . (2001). Oncogene, 20, 7855–7865.

  • Carmo-Fonseca M, Mendes-Soares L and Campos I . (2000). Nat. Cell Biol., 2, E107–E112.

  • Castiglia CL and Flint SJ . (1983). Mol. Cell. Biol., 3, 662–671.

  • Catez F, Erard M, Schaerer-Uthurralt N, Kindbeiter K, Madjar JJ and Diaz JJ . (2002). Mol. Cell. Biol., 22, 1126–1139.

  • Champagne C, Landry MC, Gingras MC and Lavoie JN . (2004). J. Biol. Chem., 279, 25905–25915.

  • Dang CV and Lee WM . (1989). J. Biol. Chem., 264, 18019–18023.

  • Dundr M, Leno GH, Hammarskjold ML, Rekosh D, Helga-Maria C and Olson MO . (1995). J. Cell Sci., 108 (Part 8), 2811–2823.

  • Fankhauser C, Izaurralde E, Adachi Y, Wingfield P and Laemmli UK . (1991). Mol. Cell. Biol., 11, 2567–2575.

  • Felber BK, Hadzopoulou-Cladaras M, Cladaras C, Copeland T and Pavlakis GN . (1989). Proc. Natl. Acad. Sci. USA, 86, 1495–1499.

  • Fox AH, Lam YW, Leung AK, Lyon CE, Andersen J, Mann M and Lamond AI . (2002). Curr. Biol., 12, 13–25.

  • Gingras MC, Champagne C, Roy M and Lavoie JN . (2002). Mol. Cell. Biol., 22, 41–56.

  • Gorlich D . (1997). Curr. Opin. Cell Biol., 9, 412–419.

  • Gorlich D and Kutay U . (1999). Annu. Rev. Cell Dev. Biol., 15, 607–660.

  • Hauber J, Malim MH and Cullen BR . (1989). J. Virol., 63, 1181–1187.

  • Hauber J, Perkins A, Heimer EP and Cullen BR . (1987). Proc. Natl. Acad. Sci. USA, 84, 6364–6368.

  • Hiscox JA . (2002). Arch. Virol., 147, 1077–1089.

  • Kalderon D, Roberts BL, Richardson WD and Smith AE . (1984). Cell, 39, 499–509.

  • Kornitzer D, Sharf R and Kleinberger T . (2001). J. Cell Biol., 154, 331–344.

  • Kubota S, Copeland TD and Pomerantz RJ . (1999). Oncogene, 18, 1503–1514.

  • Kubota S, Siomi H, Satoh T, Endo S, Maki M and Hatanaka M . (1989). Biochem. Biophys. Res. Commun., 162, 963–970.

  • Kuppuswamy M, Subramanian T, Srinivasan A and Chinnadurai G . (1989). Nucleic Acids Res., 17, 3551–3561.

  • Lavoie JN, Champagne C, Gingras MC and Robert A . (2000). J. Cell Biol., 150, 1037–1056.

  • Lavoie JN, Nguyen M, Marcellus RC, Branton PE and Shore GC . (1998). J. Cell Biol., 140, 637–645.

  • Ledinko N . (1972). Virology, 49, 79–89.

  • Lee TW, Blair GE and Matthews DA . (2003). J. Gen. Virol., 84, 3423–3428.

  • Lee TW, Lawrence FJ, Dauksaite V, Akusjarvi G, Blair GE and Matthews DA . (2004). J. Gen. Virol., 85, 185–196.

  • Leung AK, Andersen JS, Mann M and Lamond AI . (2003). Biochem. J., 376, 553–569.

  • Li YP . (1997). J. Virol., 71, 4098–4102.

  • Livne A, Shtrichman R and Kleinberger T . (2001). J. Virol., 75, 789–798.

  • Lohrum MA, Ashcroft M, Kubbutat MH and Vousden KH . (2000). Nat. Cell Biol., 2, 179–181.

  • Lutz P, Puvion-Dutilleul F, Lutz Y and Kedinger C . (1996). J. Virol., 70, 3449–3460.

  • Malim MH, Bohnlein S, Hauber J and Cullen BR . (1989a). Cell, 58, 205–214.

  • Malim MH, Hauber J, Le SY, Maizel JV and Cullen BR . (1989b). Nature, 338, 254–257.

  • Marasco WA, Szilvay AM, Kalland KH, Helland DG, Reyes HM and Walter RJ . (1994). Arch. Virol., 139, 133–154.

  • Marcellus RC, Chan H, Paquette D, Thirlwell S, Boivin D and Branton PE . (2000). J. Virol., 74, 7869–7877.

  • Marcellus RC, Lavoie JN, Boivin D, Shore GC, Ketner G and Branton PE . (1998). J. Virol., 72, 7144–7153.

  • Mattaj IW and Englmeier L . (1998). Annu. Rev. Biochem., 67, 265–306.

  • Matthews DA . (2001). J. Virol., 75, 1031–1038.

  • Melchior F and Gerace L . (1995). Curr. Opin. Cell Biol., 7, 310–318.

  • Olson MO, Dundr M and Szebeni A . (2000). Trends Cell Biol., 10, 189–196.

  • Pederson T . (1998). Nucleic Acids Res., 26, 3871–3876.

  • Puvion-Dutilleul F and Christensen ME . (1993). Eur. J. Cell Biol., 61, 168–176.

  • Raskas HJ, Thomas DC and Green M . (1970). Virology, 40, 893–902.

  • Robbins J, Dilworth SM, Laskey RA and Dingwall C . (1991). Cell, 64, 615–623.

  • Robert A, Miron MJ, Champagne C, Gingras MC, Branton PE and Lavoie JN . (2002). J. Cell Biol., 158, 519–528.

  • Roopchand DE, Lee JM, Shahinian S, Paquette D, Bussey H and Branton PE . (2001). Oncogene, 20, 5279–5290.

  • Rosen CA, Sodroski JG and Haseltine WA . (1985). Proc. Natl. Acad. Sci. USA, 82, 6502–6506.

  • Ruben S, Perkins A, Purcell R, Joung K, Sia R, Burghoff R, Haseltine WA and Rosen CA . (1989). J. Virol., 63, 1–8.

  • Scheer U and Hock R . (1999). Curr. Opin. Cell Biol., 11, 385–390.

  • Scherl A, Coute Y, Deon C, Calle A, Kindbeiter K, Sanchez JC, Greco A, Hochstrasser D and Diaz JJ . (2002). Mol. Biol. Cell, 13, 4100–4109.

  • Seiki M, Inoue J, Hidaka M and Yoshida M . (1988). Proc. Natl. Acad. Sci. USA, 85, 7124–7128.

  • Shtrichman R and Kleinberger T . (1998). J. Virol., 72, 2975–2982.

  • Shtrichman R, Sharf R, Barr H, Dobner T and Kleinberger T . (1999). Proc. Natl. Acad. Sci. USA, 96, 10080–10085.

  • Shtrichman R, Sharf R and Kleinberger T . (2000). Oncogene, 19, 3757–3765.

  • Siomi H and Dreyfuss G . (1995). J. Cell Biol., 129, 551–560.

  • Siomi H, Shida H, Maki M and Hatanaka M . (1990). J. Virol., 64, 1803–1807.

  • Siomi H, Shida H, Nam SH, Nosaka T, Maki M and Hatanaka M . (1988). Cell, 55, 197–209.

  • Strom AC and Weis K . (2001). Genome Biol., 2, REVIEWS3008.

  • Truant R and Cullen BR . (1999). Mol. Cell. Biol., 19, 1210–1217.

  • Walton TH, Moen Jr PT, Fox E and Bodnar JW . (1989). J. Virol., 63, 3651–3660.

Download references

Acknowledgements

We thank Paola Blanchette and Suiyang Li (McGill University) for helpful discussions and critical review of the manuscript. We are also grateful to Gideon Dreyfuss (University of Pennsylvania, School of Medicine) for the gift of myc-PK cDNA, to John F Presley, Jacynthe Laliberté and Alfredo Ribeiro-DaSilva (McGill University) for assistance with confocal microscopy and to Melissa Mui and Ratna Samanta (McGill University) for making the HA-E4orf4-R66-73K cDNA. This work was supported by grants from the National Cancer Institute of Canada (PEB), the Canadian Institutes of Health Research (PEB, IEG and JNL) and GeminX Biotechnologies Inc. (PEB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip E Branton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miron, MJ., Gallouzi, IE., Lavoie, J. et al. Nuclear localization of the adenovirus E4orf4 protein is mediated through an arginine-rich motif and correlates with cell death. Oncogene 23, 7458–7468 (2004). https://doi.org/10.1038/sj.onc.1207919

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207919

Keywords

This article is cited by

Search

Quick links