Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

p53 functions in the incorporation step in DNA base excision repair in mouse liver mitochondria

Abstract

The tumor suppressor p53 protein stimulates nuclear base excision repair (BER) in vitro. In response to certain cellular stresses, p53 translocates to mitochondria, where it can trigger an apoptotic response. However, a potential role for p53 in modulating mitochondrial DNA repair has not yet been examined. In this study, we show that p53 also modulates mitochondrial BER. Uracil-initiated BER incorporation, which measures flux through the entire BER pathway, was lower in mitochondrial extracts from nonstressed p53 knockout mice than in wild type. The addition of recombinant p53 complemented the BER incorporation in p53 knockout extracts and stimulated BER in wt extracts. The activities of three major mitochondrial DNA glycosylases were similar in extracts from wild-type and knockout animals. Likewise, AP endonuclease activity was unaffected by the absence of p53. Gel shift experiments with recombinant p53 demonstrated that p53 did not bind to the uracil-containing substrate used in the repair assay. Polymerase γ gap-filing activity was less efficient in p53 knockout extracts, but it was complemented with the addition of recombinant p53. Thus, we conclude that p53 may participate in mtBER by stimulating the repair synthesis incorporation step.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AP:

apurinic/apyrimidinic

BER:

base excision repair

MLME:

mouse liver mitochondrial extract

MLNE:

mouse liver nuclear extract

mtBER:

mitochondrial base excision repair

mtDNA:

mitochondrial DNA

NTH1:

endonuclease III homologue 1

OGG1:

oxoguanine DNA glycosylase

Pol γ:

DNA polymerase gamma

U:

uracil

UDG:

uracil DNA glycosylase

References

  • Allinson SL, Dianova II and Dianov GL . (2001). EMBO J., 20, 6919–6926.

  • Bohr VA, Stevnsner T and Souza-Pinto NC . (2002). Gene, 286, 127–134.

  • Degtyareva N, Subramanian D and Griffith JD . (2001). J. Biol. Chem., 276, 8778–8784.

  • Domena JD and Mosbaugh DW . (1985). Biochemistry, 24, 7320–7328.

  • Dumont P, Leu JI, Della III PA, George DL and Murphy M . (2003). Nat. Genet., 33, 357–365.

  • Evans AR, Limp-Foster M and Kelley MR . (2000). Mutat. Res., 461, 83–108.

  • Evans MK, Taffe BG, Harris CC and Bohr VA . (1993). Cancer Res, 53, 5377–5381.

  • Foord OS, Bhattacharya P, Reich Z and Rotter V . (1991). Nucleic Acids Res., 19, 5191–5198.

  • Gaiddon C, Moorthy NC and Prives C . (1999). EMBO J., 18, 5609–5621.

  • Habano W, Sugai T, Nakamura SI, Uesugi N, Yoshida T and Sasou S . (2000). Gastroenterology, 118, 835–841.

  • Hanawalt PC . (2002). Oncogene, 21, 8949–8956.

  • Hofseth LJ, Khan MA, Ambrose M, Nikolayeva O, Welliver MX, Kartalou M, Hussain SP, Roth RB, Zhou X, Mechanic L, Zurer I, Rotter V, Samson LD and Harris CC . (2003). J. Clin. Invest., 112, 1887–1894.

  • Karahalil B, Souza-Pinto NC, Parsons JL, Elder RH and Bohr VA . (2003). J. Biol. Chem., 278, 33701–33707.

  • Krokan HE, Drablos F and Slupphaug G . (2002). Oncogene, 21, 8935–8948.

  • Krokan HE, Standal R and Slupphaug G . (1997). Biochem. J., 325, 1–16.

  • Lakshmipathy U and Campbell C . (1999). Mol. Cell. Biol., 19, 3869–3876.

  • Lee S, Elenbaas B, Levine A and Griffith J . (1995). Cell, 81, 1013–1020.

  • Longley MJ, Prasad R, Srivastava DK, Wilson SH and Copeland WC . (1998). Proc. Natl. Acad. Sci. USA, 95, 12244–12248.

  • Marchenko ND, Zaika A and Moll UM . (2000). J. Biol. Chem., 275, 16202–16212.

  • Meira LB, Cheo DL, Hammer RE, Burns DK, Reis A and Friedberg EC . (1997). Nat. Genet., 17, 145.

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P and Moll UM . (2003). Mol. Cell, 11, 577–590.

  • Moll UM and Zaika A . (2001). FEBS Lett., 493, 65–69.

  • Nilsen H, Otterlei M, Haug T, Solum K, Nagelhus TA, Skorpen F and Krokan HE . (1997). Nucleic Acids Res., 21, 2579–2584.

  • Offer H, Milyavsky M, Erez N, Matas D, Zurer I, Harris CC and Rotter V . (2001). Oncogene, 20, 581–589.

  • Offer H, Wolkowicz R, Matas D, Blumenstein S, Livneh Z and Rotter V . (1999). FEBS Lett., 450, 197–204.

  • Seo YR, Fishel ML, Amundson S, Kelley MR and Smith ML . (2002). Oncogene, 21, 731–737.

  • Sobol RW, Kartalou M, Almeida KH, Joyce DF, Engelward BP, Horton JK, Prasad R, Samson LD and Wilson SH . (2003). J. Biol. Chem., 278, 39951–39959.

  • Souza-Pinto NC, Croteau DL, Hudson EK, Hansford RG and Bohr VA . (1999). Nucleic Acids Res., 27, 1935–1942.

  • Souza-Pinto NC, Eide L, Hogue BA, Thybo T, Stevnsner T, Seeberg E, Klungland A and Bohr VA . (2001). Cancer Res., 61, 5378–5381.

  • Stierum RH, Dianov GL and Bohr VA . (1999a). Nucleic Acids Res., 27, 3712–3719.

  • Stierum RH, Dianov GL and Bohr VA . (1999b). Nucleic Acids Res., 27, 3712–3719.

  • Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC and Bohr VA . (2004). FASEB J., 18, 595–597.

  • Taguchi T, Ogihara M, Maekawa T, Hanaoka F and Tanno M . (1995). Biochem. Biophys. Res. Commun., 216, 715–722.

  • Vogelstein B, Lane D and Levine AJ . (2000). Nature, 408, 307–310.

  • Wang XW, Yeh H, Schaeffer L, Roy R, Moncollin V, Egly JM, Wang Z, Freidberg EC, Evans MK and Taffe BG . (1995). Nat. Genet., 10, 188–195.

  • Wilson III DM, Takeshita M, Grollman AP and Demple B . (1995). J. Biol. Chem., 270, 16002–16007.

  • Yamada NA and Farber RA . (2002). Cancer Res., 62, 6061–6064.

  • Zhou J, Ahn J, Wilson SH and Prives C . (2001). EMBO J., 20, 914–923.

  • Zurer I, Hofseth LJ, Cohen Y, Xu-Welliver M, Hussain SP, Harris CC and Rotter V . (2004). Carcinogenesis, 25, 11–19.

Download references

Acknowledgements

We thank Drs Cayetano Von Kobbe and Syed Imam for the critical reading of this manuscript. We also thank Dr Draginja Djurickovic (NCIFCRF) for transferring the animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilhelm A Bohr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza-Pinto, N., Harris, C. & Bohr, V. p53 functions in the incorporation step in DNA base excision repair in mouse liver mitochondria. Oncogene 23, 6559–6568 (2004). https://doi.org/10.1038/sj.onc.1207874

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207874

Keywords

This article is cited by

Search

Quick links