Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bcl-2 phosphorylation and apoptosis activated by damaged microtubules require mTOR and are regulated by Akt

Abstract

The serine/threonine kinase mTOR, the major sensor of cell growth along the PI3K/Akt pathway, can be activated by agents acting on microtubules. Damaged microtubules induce phosphorylation of the Bcl-2 protein and lower the threshold of programmed cell death, both of which are inhibited by rapamycin. In HEK293 cells expressing Akt mutants, the level of Bcl-2 phosphorylation and the threshold of apoptosis induced by taxol or by nocodazole are significantly modified. In cells expressing dominant-negative Akt (DN-Akt), Bcl-2 phosphorylation and p70S6KThr421/Ser424 phosphorylation induced by taxol or nocodazole were significantly enhanced as compared to cells expressing constitutively active Akt (CA-Akt) and inhibited by rapamycin. Moreover, DN-Akt cells were more sensitive to antitubule agents than CA-Akt cells. In nocodazole-treated HEK293 cells sorted according to cell cycle, the p70S6KThr421/Ser424 phosphorylation was associated to the G2/M fraction. More relevant, nocodazole inhibited, in a dose–response manner, mTOR phosphorylation at Ser2448. This activity, potentiated in DN-Akt cells, was not detectable in CA-Akt cells. Our results suggest that death signals originating from damaged microtubules in G2/M can compete with G1 survival pathways at the level of mTOR. These findings have implications for cancer therapy and drug resistance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abraham RT . (1998). Curr. Opin. Immunol., 10, 330–336.

  • Agami R and Bernards R . (2002). Cancer Lett., 177, 111–118.

  • Avruch J . (1998). Mol. Cell. Biochem., 182, 31–48.

  • Bevilacqua A, Ceriani MC, Canti GF, Asnaghi L, Gherzi R, Brewer G, Papucci L, Schiavone N, Capaccioli S and Nicolin A . (2003a). J. Biol. Chem., 278, 23451–23459.

  • Bevilacqua A, Ceriani MC, Capaccioli S and Nicolin A . (2003b). J. Cell Physiol., 195, 356–372.

  • Blagosklonny MV and Fojo T . (1999). Int. J. Cancer, 83, 151–156.

  • Borner C . (2003). Mol. Immunol., 39, 615–647.

  • Brazil DP, Park J and Hemmings BA . (2002). Cell, 111, 293–303.

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS and Schreiber SL . (1994). Nature, 369, 756–758.

  • Brown EJ, Beal PA, Keith CT, Chen J, Shin TB and Schreiber SL . (1995). Nature, 377, 441–446.

  • Brunn GJ, Fadden P, Haystead TA and Lawrence JC . (1997). J. Biol. Chem., 272, 32547–32550.

  • Calastretti A, Bevilacqua A, Ceriani MC, Viganò S, Zancai P, Capaccioli S and Nicolin A . (2001a). Oncogene, 20, 6172–6180.

  • Calastretti A, Rancati F, Ceriani MC, Asnaghi L, Canti G and Nicolin A . (2001b). Eur. J. Cancer, 37, 2121–2128.

  • Chau BN and Wang JY . (2003). Nat. Rev. Cancer, 3, 130–138.

  • Chen J and Fang Y . (2002). Biochem. Pharmacol., 64, 1071–1077.

  • Church AC . (2003). QJM, 96, 91–102.

  • Cory S and Adams JM . (2002). Nat. Rev. Cancer, 2, 647–656.

  • Decary S, Decesse JT, Ogryzko V, Reed JC, Naguibneva I, Harel-Bellan A and Cremisi CE . (2002). Mol. Cell. Biol., 22, 7877–7888.

  • Du L, Lyle CS, Hall T and Chambers TC . (2003). Proceedings of the 94th AACR Annual Meeting.Toronto, Ontario, Canada.

  • Dudkin L, Dilling MB, Cheshire PJ, Harwood FC, Hollingshead M, Arbuck SG, Travis R, Sausville EA and Houghton PJ . (2001). Clin. Cancer Res., 7, 1758–1764.

  • Ferrara N . (2002). Nat. Rev. Cancer, 10, 795–803.

  • Fisher DE . (2001). Apoptosis, 6, 7–15.

  • Green DR and Evan GI . (2002). Cancer Cell., 1, 19–30.

  • Hahn WC and Weinberg RA . (2002). Nat. Rev. Cancer, 2, 331–341.

  • Haldar S, Basu A and Croce CM . (1997). Cancer Res., 57, 229–233.

  • Haldar S, Basu A and Croce CM . (1998). Cancer Res., 58, 1609–1615.

  • Han JW, Pearson RB, Dennis PB and Thomas G . (1995). J. Biol. Chem., 270, 396–403.

  • Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J and Yonezawa K . (2002). Cell, 110, 177–189.

  • Harada H, Andersen JS, Mann M, Terada N and Korsmeyer SJ . (2001). Proc. Natl. Acad. Sci. USA, 98, 9666–9670.

  • Hill MM and Hemmings BA . (2002). Pharmacol. Ther., 93, 243–251.

  • Jacinto E and Hall MN . (2003). Nat. Rev. Mol. Cell. Biol., 4, 117–126.

  • Johnstone RW, Ruefli AA and Lowe SW . (2002). Nat. Rev. Drug. Discovery, 1, 287–299.

  • Jordan MA and Wilson L . (1998). Curr. Opin. Cell. Biol., 10, 123–130.

  • Kim JE and Chen J . (2000). Proc. Natl. Acad. Sci., 97, 14340–14345.

  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM . (2002). Cell, 110, 163–175.

  • Koyasu S . (2003). Nat. Immunol., 4, 313–319.

  • Kozma SC and Thomas G . (2002). Bioessays, 24, 65–71.

  • Krystal GW, Sulanke G and Litz J . (2002). Mol. Cancer Ther., 1, 913–922.

  • Kurzrock R, Kantarjian HM, Druker BJ and Talpaz M . (2003). Ann. Intern. Med., 138, 819–830.

  • Laemmli UK . (1970). Nature, 227, 680–685.

  • Law BK, Chytil A, Dumont N, Hamilton EG, Waltner-Law ME, Aakre ME, Covington C and Moses HL . (2002). Mol. Cell. Biol., 22, 8184–8198.

  • Le XF, Hittelman WN, Liu J, McWatters A, Li C, Mills GB and Bast Jr RC . (2003). Oncogene, 22, 484–497.

  • Ling YH, Liebes L, Ng B, Buckley M, Elliott PJ, Adams J, Jiang JD, Muggia FM and Perez-Soler R . (2002). Mol. Cancer Ther., 1, 841–849.

  • Ling YE, Tornos C and Perez-Soler R . (1998). J. Biol. Chem., 273, 18984–18991.

  • Mayer TU . (2003). Trends Cell Biol., 13, 270–277.

  • McMahon LP, Choi KM, Lin TA, Abraham RT and Lawrence Jr JC . (2002). Mol. Cell. Biol., 22, 7428–7438.

  • Mosmann T . (1983). J. Immunol. Methods, 65, 55–63.

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F and Riccardi C . (1991). J. Immunol. Methods, 139, 271–279.

  • Ofir R, Seidman R, Rabinski T, Krup M, Yavelsky V, Weinstein Y and Wolfson M . (2002). Cell Death Differ., 9, 636–642.

  • Pelengaris S, Khan M and Evan G . (2002). Nat. Rev. Cancer, 2, 764–776.

  • Pene F, Claessens YE, Muller O, Viguie F, Mayeux P, Dreyfus F, Lacombe C and Bouscary D . (2002). Oncogene, 21, 6587–6597.

  • Pullen N and Thomas G . (1997). FEBS Lett., 23, 78–82.

  • Ruvolo PP, Deng X and May WS . (2001). Leukemia, 15, 515–522.

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P and Snyder SH . (1994). Cell, 78, 35–43.

  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G and Abraham RT . (1995). J. Biol. Chem., 270, 815–822.

  • Schmelzle T and Hall MN . (2000). Cell, 103, 253–262.

  • Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM and Abraham RT . (2000). Cancer Res., 60, 3504–3513.

  • Srivastava RK, Mi QS, Hardwick JM and Longo DL . (1999). Proc. Natl. Acad. Sci. USA, 96, 3775–3780.

  • Taylor WR and Stark GR . (2001). Oncogene, 20, 1803–1815.

  • Vincent AM and Feldman EL . (2002). Growth Horm IGF Res., 12, 193–197.

  • Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP and Williams RL . (2000). Mol. Cell., 6, 909–919.

  • Werlen G, Hausmann B, Naeher D and Palmer E . (2003). Science, 299, 1859–1863.

  • Yamamoto K, Ichijo H and Korsmeyer SJ . (1999). Mol. Cell. Biol., 19, 8469–8478.

Download references

Acknowledgements

We thank Dr J Chen for plasmids and critically reading the manuscript, Dr A Gulino for plasmids, Dr P Woodford for revision of the manuscript and E Fontanella for helpful FACS assistance. This work was supported by grants from AIRC, Fondazione CARIPLO, Milan, Italy; MIUR, CNR-Project Oncology, Rome, Italy.

LA and AC were supported by a fellowship from FIRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Nicolin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asnaghi, L., Calastretti, A., Bevilacqua, A. et al. Bcl-2 phosphorylation and apoptosis activated by damaged microtubules require mTOR and are regulated by Akt. Oncogene 23, 5781–5791 (2004). https://doi.org/10.1038/sj.onc.1207698

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207698

Keywords

This article is cited by

Search

Quick links