Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment

Abstract

Solid tumors frequently contain hypoxic subregions due to insufficient blood supply. In these domains, cells can undergo p53-dependent apoptosis. Therefore, hypoxia has been implicated as a physiological stimulus for p53 accumulation and activation. In such an environment, p53 mutant cells exhibit a selective growth advantage. Hypoxic regulation of p53 has been proposed to be hypoxia inducible factor (HIF) dependent; however, controversy remains over whether and to what extent low oxygen (O2) tension by itself enhances p53 protein stability. Here, we examined the p53 response to hypoxia and hypoxia mimetics in several cell lines expressing different HIF-α proteins. Most cells exhibited elevated levels of p53 in response to hypoxia mimetics such as deferoxamine mesylate and CoCl2, regardless of their HIF-α protein expression profile. However, over a range of O2 levels, from 1.5% to less than 0.02%, we failed to observe p53 accumulation or p53 nuclear translocation in any cell lines tested. Only after treatment with a combination of hypoxia and acidosis/nutrient deprivation did some cells exhibit p53 induction. Our results suggest that, although hypoxia induces p53 accumulation in vivo, secondary effects such as acidosis caused by a hypoxic Pasteur effect (instead of low O2 by itself) are necessary for p53 accumulation. Therefore, the expression of HIF-1α and p53 proteins is not coupled during the cellular hypoxia response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Achison M and Hupp TR . (2003). Oncogene, 22, 3431–3440.

  • Alarcon R, Koumenis C, Geyer RK, Maki CG and Giaccia AJ . (1999). Cancer Res., 59, 6046–6051.

  • An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV and Neckers LM . (1998). Nature, 392, 405–408.

  • Bruick RK . (2000). Proc. Natl. Acad. Sci. USA, 97, 9082–9087.

  • Bruick RK and McKnight SL . (2001). Science, 294, 1337–1340.

  • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E and Keshet E . (1998). Nature, 394, 485–490.

  • Dang CV and Semenza GL . (1999). Trends Biochem. Sci., 24, 68–72.

  • Denko NC, Green SL, Edwards D and Giaccia AJ . (2000). Exp. Cell Res., 258, 82–91.

  • Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ and Ratcliffe PJ . (2001). Cell, 107, 43–54.

  • Freedman DA and Levine AJ . (1998). Mol. Cell. Biol., 18, 7288–7293.

  • Gardner LB, Li Q, Park MS, Flanagan WM, Semenza GL and Dang CV . (2001). J. Biol. Chem., 276, 7919–7926.

  • Giaccia AJ and Kastan MB . (1998). Genes Dev., 12, 2973–2983.

  • Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC and Johnson RS . (2003). Mol. Cell. Biol., 23, 359–369.

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW and Giaccia AJ . (1996). Nature, 379, 88–91.

  • Graeber TG, Peterson JF, Tsai M, Monica K, Fornace Jr AJ and Giaccia AJ . (1994). Mol. Cell. Biol., 14, 6264–6277.

  • Gu YZ, Moran SM, Hogenesch JB, Wartman L and Bradfield CA . (1998). Gene Expr., 7, 205–213.

  • Hammond EM, Denko NC, Dorie MJ, Abraham RT and Giaccia AJ . (2002). Mol. Cell. Biol., 22, 1834–1843.

  • Haupt Y, Maya R, Kazaz A and Oren M . (1997). Nature, 387, 296–299.

  • Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, Maxwell PH, Ratcliffe PJ, Stuart DI and Jones EY . (2002). Nature, 417, 975–978.

  • Hu CJ, Wang LY, Chodosh LA, Keith B and Simon MC . (2003). Mol. Cell. Biol., 23, 9361–9374.

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW and Ratcliffe PJ . (2001). Science, 292, 468–472.

  • Jain S, Maltepe E, Lu MM, Simon C and Bradfield CA . (1998). Mech. Dev., 73, 117–123.

  • Kallio PJ, Pongratz I, Gradin K, McGuire J and Poellinger L . (1997). Proc. Natl. Acad. Sci. USA, 94, 5667–5672.

  • Keith B, Adelman DM and Simon MC . (2001). Proc. Natl. Acad. Sci. USA, 98, 6692–6697.

  • Kim CY, Tsai MH, Osmanian C, Graeber TG, Lee JE, Giffard RG, DiPaolo JA, Peehl DM and Giaccia AJ . (1997). Cancer Res., 57, 4200–4204.

  • Koch CJ . (2002). Methods Enzymol., 352, 3–31.

  • Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M, Derr J, Taya Y, Lowe SW, Kastan M and Giaccia A . (2001). Mol. Cell. Biol., 21, 1297–1310.

  • Kubbutat MH, Jones SN and Vousden KH . (1997). Nature, 387, 299–303.

  • Makino Y, Kanopka A, Wilson WJ, Tanaka H and Poellinger L . (2002). J. Biol. Chem., 277, 32405–32408.

  • Maltepe E, Keith B, Arsham AM, Brorson JR and Simon MC . (2000). Biochem. Biophys. Res. Commun., 273, 231–238.

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER and Ratcliffe PJ . (1999). Nature, 399, 271–275.

  • Maya R and Oren M . (2000). Oncogene, 19, 3213–3215.

  • Ohtsubo T, Wang X, Takahashi A, Ohnishi K, Saito H, Song CW and Ohnishi T . (1997). Cancer Res., 57, 3910–3913.

  • Pluquet O and Hainaut P . (2001). Cancer Lett., 174, 1–15.

  • Prives C . (1998). Cell, 95, 5–8.

  • Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL and Bedi A . (2000). Genes Dev., 14, 34–44.

  • Roth J, Dobbelstein M, Freedman DA, Shenk T and Levine AJ . (1998). EMBO J., 17, 554–564.

  • Salceda S, Beck I and Caro J . (1996). Arch. Biochem. Biophys., 334, 389–394.

  • Salceda S and Caro J . (1997). J. Biol. Chem., 272, 22642–22647.

  • Sax JK, Dash BC, Hong R, Dicker DT and El-Deiry WS . (2002). Cell Cycle, 1, 90–96.

  • Schmaltz C, Hardenbergh PH, Wells A and Fisher DE . (1998). Mol. Cell. Biol., 18, 2845–2854.

  • Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K and Johnson RS . (2001). Mol. Cell. Biol., 21, 3436–3444.

  • Semenza GL . (2000). J. Appl. Physiol., 88, 1474–1480.

  • Semenza GL . (2001). Trends Mol. Med., 7, 345–350.

  • Semenza GL . (2002). Intern. Med., 41, 79–83.

  • Semenza GL and Wang GL . (1992). Mol. Cell. Biol., 12, 5447–5454.

  • Sharpless NE and DePinho RA . (2002). Cell, 110, 9–12.

  • Stempien-Otero A, Karsan A, Cornejo CJ, Xiang H, Eunson T, Morrison RS, Kay M, Winn R and Harlan J . (1999). J. Biol. Chem., 274, 8039–8045.

  • Tian H, Hammer RE, Matsumoto AM, Russell DW and McKnight SL . (1998). Genes Dev., 12, 3320–3324.

  • Wang GL and Semenza GL . (1995). J. Biol. Chem., 270, 1230–1237.

  • Wenger RH, Camenisch G, Desbaillets I, Chilov D and Gassmann M . (1998). Cancer Res., 58, 5678–5680.

  • Wenger RH and Gassmann M . (1996). Nature, 380, 100.

  • Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL, Wood SM, Gatter KC, Harris AL, Pugh CW, Ratcliffe PJ and Maxwell PH . (1998). Blood, 92, 2260–2268.

  • Wu X, Bayle JH, Olson D and Levine AJ . (1993). Genes Dev., 7, 1126–1132.

  • Yu J, Wang Z, Kinzler KW, Vogelstein B and Zhang L . (2003). Proc. Natl. Acad. Sci. USA, 100, 1931–1936.

  • Zauberman A, Flusberg D, Haupt Y, Barak Y and Oren M . (1995). Nucleic Acids Res., 23, 2584–2592.

  • Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL and Simons JW . (1999). Cancer Res., 59, 5830–5835.

  • Zhu Y, Mao XO, Sun Y, Xia Z and Greenberg DA . (2002). J. Biol. Chem., 277, 22909–22914.

Download references

Acknowledgements

We thank Dr Peter Carmeliet (Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, KU Leuven, Belgium) for kindly providing the Hif-−/− and Hif-2α−/− ES cells, and Mark Muelner for technical assistance. We thank all members of the Simon laboratory for helpful discussions. This work was supported by the Howard Hughes Medical Institute (MCS), The National Institutes of Health (MCS, Grant #66310; CK, Grant #P01-CA79862), and the Abramson Family Cancer Research Institute (YP, AMA, MCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Celeste Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Y., Oprysko, P., Asham, A. et al. p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene 23, 4975–4983 (2004). https://doi.org/10.1038/sj.onc.1207657

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207657

Keywords

This article is cited by

Search

Quick links