Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes

Abstract

The INI1/hSNF5 tumor suppressor is an integral component of mammalian SWI/SNF chromatin remodeling enzymes that contain SNF2 family ATPases BRM (Brahma) or BRG1 (Brahma Related Gene 1) and that contribute to the regulation of many genes. Genetic studies of yeast SWI/SNF enzyme revealed similar phenotypes when single or multiple components of the enzyme were deleted, indicating a requirement for each subunit. To address the contribution of INI1 in the regulation of SWI/SNF-dependent genes in mammalian cells, we examined the expression of multiple BRG1-dependent, constitutively expressed genes in INI1-deficient cancer cell lines. At least one INI1-deficient line expressed each gene, and reintroduction of INI1 had negligible effects on expression levels. Lack of INI1 also did not prevent interferon gamma (IFNγ)-mediated induction of CIITA, which is BRG1 dependent, and GBP-1, which is BRG1 enhanced, and reintroduction of INI1 had minimal effects. Chromatin immunoprecipitation experiments revealed that BRG1 inducibly binds to the CIITA promoter despite the absence of INI1. Unlike yeast deleted for the INI1 homologue, SWI/SNF enzymes in INI1-deficient cells were largely intact. Thus in human cells, SWI/SNF enzyme complex formation and the expression of many BRG1-dependent genes are independent of INI1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adler HT, Chinery R, Wu DY, Kussick SJ, Payne JM, Fornace Jr AJ and Tkachuk DC . (1999). Mol. Cell. Biol., 19, 7050–7060.

  • Ae K, Kobayashi N, Sakuma R, Ogata T, Kuroda H, Kawaguchi N, Shinomiya K and Kitamura Y . (2002). Oncogene, 21, 3112–3120.

  • Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T and Thanos D . (2000). Cell, 103, 667–678.

  • Armstrong JA, Bieker JJ and Emerson BM . (1998). Cell, 95, 93–104.

  • Becker PB and Horz W . (2002). Annu. Rev. Biochem., 71, 247–273.

  • Betz BL, Strobeck MW, Reisman DN, Knudsen ES and Weissman BE . (2002). Oncogene, 21, 5193–5203.

  • Biegel JA, Fogelgren B, Zhou JY, James CD, Janss AJ, Allen JC, Zagzag D, Raffel C and Rorke LB . (2000). Clin. Cancer Res., 6, 2759–2763.

  • Boehm U, Klamp T, Groot M and Howard JC . (1997). Annu. Rev. Immunol., 15, 749–795.

  • Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D, Chambon P, Crabtree G and Magnuson T . (2000). Mol. Cell, 6, 1287–1295.

  • Cairns BR, Kim Y-J, Sayre MH, Laurent BC and Kornberg RD . (1994). Proc. Natl. Acad. Sci. USA, 91, 1950–1954.

  • Carlson M and Laurent B . (1994). Curr. Biol., 6, 396–402.

  • Cheng SW, Davies KP, Yung E, Beltran RJ, Yu J and Kalpana GV . (1999). Nat. Genet., 22, 102–105.

  • Cosma MP . (2002). Mol. Cell, 10, 227–236.

  • Côté J, Quinn J, Workman JL and Peterson CL . (1994). Science, 265, 53–60.

  • DeCristofaro MF, Betz BL, Wang W and Weissman BE . (1999). Oncogene, 18, 7559–7565.

  • de la Serna IL, Carlson KA, Hill DA, Guidi CJ, Stephenson RO, Sif S, Kingston RE and Imbalzano AN . (2000). Mol. Cell. Biol., 20, 2839–2851.

  • de la Serna IL, Carlson KA and Imbalzano AN . (2001a). Nat. Genet., 27, 187–190.

  • de la Serna IL, Roy K, Carlson KA and Imbalzano AN . (2001b). J. Biol. Chem., 276, 41486–41491.

  • DiRenzo J, Shang Y, Phelan M, Sif S, Myers M, Kingston R and Brown M . (2000). Mol. Cell. Biol., 20, 7541–7549.

  • Fletcher TM, Xiao N, Mautino G, Baumann CT, Wolford R, Warren BS and Hager GL . (2002). Mol. Cell. Biol., 22, 3255–3263.

  • Fryer CJ and Archer TK . (1998). Nature, 393, 88–91.

  • Green CM and Almouzni G . (2002). EMBO Rep., 3, 28–33.

  • Guidi C, Sands A, Zambrowicz B, Turner T, Demers D, Webster W, Smith T, Imbalzano A and Jones S . (2001). Mol. Cell. Biol., 21, 3598–3603.

  • Hirschhorn JN, Brown SA, Clark CD and Winston F . (1992). Genes Dev., 6, 2288–2298.

  • Imbalzano AN, Kwon H, Green MR and Kingston RE . (1994). Nature, 370, 481–485.

  • Kalpana GV, Marmon S, Wang W, Crabtree GR and Goff SP . (1994). Science, 266, 2002–2006.

  • Khavari PA, Peterson CL, Tamkun JW and Crabtree GR . (1993). Nature, 366, 170–174.

  • Kim JK, Huh SO, Choi H, Lee KS, Shin D, Lee C, Nam JS, Kim H, Chung H, Lee HW, Park SD and Seong RH . (2001). Mol. Cell. Biol., 21, 7787–7795.

  • Klochendler-Yeivin A, Fiette L, Barra K, Muchardt C, Babinet C and Yaniv M . (2000). EMBO Rep., 1, 500–506.

  • Kowenz-Leutz E and Leutz A . (1999). Mol. Cell, 4, 735–743.

  • Kruger W and Herskowitz I . (1991). Mol. Cell. Biol., 11, 4135–4146.

  • Kruger W, Peterson CL, Sil A, Coburn C, Arents G, Moudrianakis EN and Herskowitz I . (1995). Genes Dev., 9, 2770–2779.

  • Kwon H, Imbalzano AN, Khavari PA, Kingston RE and Green MR . (1994). Nature, 370, 477–481.

  • Liu R, Liu H, Chen X, Kirby M, Brown PO and Zhao K . (2001). Cell, 106, 309–318.

  • Muchardt C, Sardet C, Bourachot B, Onufryk C and Yaniv M . (1995). Nucleic Acids Res., 23, 1127–1132.

  • Muchardt C and Yaniv M . (1993). EMBO J., 12, 4279–4290.

  • Mudhasani R and Fontes JD . (2002). Mol. Cell. Biol., 22, 5019–5026.

  • Murphy DJ, Hardy S and Engel DA . (1999). Mol. Cell. Biol., 19, 2724–2733.

  • Narlikar GJ, Fan HY and Kingston RE . (2002). Cell, 108, 475–487.

  • Neely KE, Hassan AH, Wallberg AE, Steger DJ, Cairns BR, Wright AP and Workman JL . (1999). Mol. Cell, 4, 649–655.

  • Neigeborn L and Carlson M . (1984). Genetics, 108, 845–858.

  • Nie Z, Xue Y, Yang D, Zhou S, Deroo BJ, Archer TK and Wang W . (2000). Mol. Cell. Biol., 20, 8879–8888.

  • Olave I, Wang W, Xue Y, Kuo A and Crabtree GR . (2002). Genes Dev., 16, 2509–2517.

  • O’Neill DW, Schoetz SS, Lopez RA, Castle M, Rabinowitz L, Shor E, Krawchuk D, Goll MG, Renz M, Seelig HP, Han S, Seong RH, Park SD, Agalioti T, Munshi N, Thanos D, Erdjument-Bromage H, Tempst P and Bank A . (2000). Mol. Cell. Biol., 20, 7572–7582.

  • Papoulas O, Beck SJ, Moseley SL, McCallum CM, Sarte M, Shearn A and Tamkun J . (1998). Development, 125, 3955–3966.

  • Pattenden SG, Klose R, Karaskov E and Bremner R . (2002). EMBO J., 21, 1978–1986.

  • Peterson CL, Dingwall A and Scott MP . (1994). Proc. Natl. Acad. Sci. USA, 91, 2905–2908.

  • Phelan ML, Sif S, Narlikar GJ and Kingston RE . (1999). Mol. Cell, 3, 247–253.

  • Reincke BS, Rosson GB, Oswald BW and Wright CF . (2003). J. Cell Physiol., 194, 303–313.

  • Reyes JC, Barra J, Muchardt C, Camus A, Babinet C and Yaniv M . (1998). EMBO J., 17, 6979–6991.

  • Roberts CW, Galusha SA, McMenamin ME, Fletcher CD and Orkin SH . (2000). Proc. Natl. Acad. Sci. USA, 97, 13796–13800.

  • Roberts CW, Leroux MM, Fleming MD and Orkin SH . (2002). Cancer Cell, 2, 415–425.

  • Sévenet N, Lellouch-Tubiana A, Schofield D, Hoang-Xuan K, Gessler M, Birnbaum D, Jeanpierre C, Jouvet A and Delattre O . (1999a). Hum. Mol. Genet., 8, 2359–2368.

  • Sévenet N, Sheridan E, Amram D, Schneider P, Handgretinger R and Delattre O . (1999b). Am. J. Hum. Genet., 65, 1342–1348.

  • Sif S, Saurin AJ, Imbalzano AN and Kingston RE . (2001). Genes Dev., 15, 603–618.

  • Sif S, Stukenberg PT, Kirschner MW and Kingston RE . (1998). Genes Dev., 12, 2842–2851.

  • Strobeck MW, DeCristofaro MF, Banine F, Weissman BE, Sherman LS and Knudsen ES . (2001). J. Biol. Chem., 276, 9273–9278.

  • Strobeck MW, Knudsen KE, Fribourg AF, DeCristoforo MF, Weissman BE, Imbalzano AN and Knudsen ES . (2000). Proc. Natl. Acad. Sci. USA, 97, 7748–7753.

  • Trouche D, Le Chalony C, Muchardt C, Yaniv M and Kouzarides T . (1997). Proc. Natl. Acad. Sci. USA, 94, 11268–11273.

  • Turelli P, Doucas V, Craig E, Mangeat B, Klages N, Evans R, Kalpana G and Trono D . (2001). Mol. Cell, 7, 1245–1254.

  • Versteege I, Medjkane S, Rouillard D and Delattre O . (2002). Oncogene, 21, 6403–6412.

  • Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, Aurias A and Delattre O . (1998). Nature, 394, 203–206.

  • Wang S, Zhang B and Faller DV . (2002). EMBO J., 21, 3019–3028.

  • Wang W, Chi T, Xue Y, Zhou S, Kuo A and Crabtree GR . (1998). Proc. Natl. Acad. Sci. USA, 95, 492–498.

  • Wang W, Côte J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Kalpana GV, Goff SP, Yaniv M, Workman JL and Crabtree GR . (1996a). EMBO J., 15, 5370–5382.

  • Wang W, Xue Y, Zhou S, Kuo A, Cairns BR and Crabtree GR . (1996b). Genes Dev., 10, 2117–2130.

  • Winston F and Carlson M . (1992). Trends Genet., 8, 387–391.

  • Wu DY, Tkachuck DC, Roberson RS and Schubach WH . (2002). J. Biol. Chem., 277, 27706–27715.

  • Xue Y, Canman JC, Lee CS, Nie Z, Yang D, Moreno GT, Young MK, Salmon ED and Wang W . (2000). Proc. Natl. Acad. Sci. USA, 97, 13015–13020.

  • Yudkovsky N, Logie C, Hahn S and Peterson CL . (1999). Genes Dev., 13, 2369–2374.

  • Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX, Harbour JW and Dean DC . (2000). Cell, 101, 79–89.

  • Zhang ZK, Davies KP, Allen J, Zhu L, Pestell RG, Zagzag D and Kalpana GV . (2002). Mol. Cell. Biol., 22, 5975–5988.

  • Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A and Crabtree GR . (1998). Cell, 95, 625–636.

Download references

Acknowledgements

We thank David Hill and Corey Smith for advice and help with the fractionation, George Witman for use of the Beckman Airfuge, Lisa Borghesi for the CD25 primers, Noel Buckley for providing pCS2(+), and Rod Bremner for advice and discussion. HeLa cell extracts utilized in Figure 8b were derived from HeLa cells grown by the National Cell Cuture Center. This work was supported by a grant from the NCI to SNJ and ANI, by a Scholar Award from the Leukemia and Lymphoma Society to ANI, and by grants from the Ellison Medical Foundation and the Rett Syndrome Research Foundation to WW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony N Imbalzano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doan, D., Veal, T., Yan, Z. et al. Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes. Oncogene 23, 3462–3473 (2004). https://doi.org/10.1038/sj.onc.1207472

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207472

Keywords

This article is cited by

Search

Quick links