Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The PAX8/PPARγ fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARγ inhibition

Abstract

Follicular thyroid carcinoma (FTC) frequently harbors the PAX8/PPARγ fusion gene (PPFP); however, its oncogenic role and mechanism(s) of action remain undefined. We investigated PPFP's effects on cell growth, apoptosis, cell–cell, and cell–matrix interactions in immortalized human thyroid cells (Nthy-ori 3-1) and NIH 3T3 cells. PPFP expression increased the growth of transient and stable Nthy-ori transfectants (threefold by 72 h). There was an 8.4% increase of cells in the S+G2/M phase, a 7.8% decrease in cells in the G0+G1 phase and a 66% decline in apoptosis at 72 h. Stable Nthy-ori PPFP transfectants grew in soft agar, and PPFP-transfected NIH 3T3 cells exhibited efficient focus formation, suggesting loss of anchorage-dependent growth and contact inhibition, respectively. Overexpression of PPARγ in Nthy-ori cells did not recapitulate PPFP's growth effects. Treatment of Nthy-ori cells with an irreversible PPARγ inhibitor mimicked the growth-promoting effects of PPFP and co-expression of PPFP and PPARγ blocked PPARγ transactivation activity. Our data provide functional evidence that PPFP acts as an oncoprotein, whose transforming properties depend in part on inhibition of PPARγ. Our data suggest that PPFP contributes to malignant transformation during FTC oncogenesis by acting on several cellular pathways, at least some of which are normally regulated by PPARγ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aldred MA, Morrison C, Gimm O, Hoang-Vu C, Krause U, Dralle H, Jhiang S and Eng C . (2003). Oncogene, 22, 3412–3416.

  • Allen TD, Zhu YX, Hawley TS and Hawley RG . (2000). Leukemia Lymphoma, 39, 241–256.

  • Bongarzone I, Pierotti MA, Monzini N, Mondellini P, Manenti R, Donghi R, Pilotti S, Grieco M, Santoro M, Fusco A, Vecchio G and Della Porta G . (1989). Oncogene, 4, 1457–1462.

  • Burns JS, Lemoine L, Lemoine NR, Williams ED and Wynford-Thomas D . (1989). Br. J. Cancer, 59, 755–760.

  • Cimini A, Cristiano L, Bernardo A, Farioli-Vecchioli S, Stefanini S and Ceru MP . (2000). Biochem. Biophys. Acta, 1474, 397–409.

  • Espinoza CR, Schmitt TL and Loos U . (2001). J. Mol. Endocrinol., 27, 59–67.

  • Fagin JA . (2002). Mol. Endocrinol., 16, 903–911.

  • Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH and Koeffler HP . (1993). J. Clin. Invest., 91, 179–184.

  • French CA, Alexander EK, Cibas ES, Nose V, Laguette J, Faquin W, Garber J, Moore Jr F, Fletcher JA, Larsen PR and Kroll TG . (2003). Am. J. Pathol., 162, 1053–1060.

  • Hanahan D and Weinberg RA . (2000). Cell, 100, 57–70.

  • Hiddinga HJ and Eberhardt NL . (1999). Am. J. Pathol., 154, 1077–1088.

  • Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, Witztum JL, Funk CD, Conrad D and Glass CK . (1999). Nature, 400, 378–382.

  • IJpenberg A, Jeannin E, Wahli W and Desvergne B . (1997). J. Biol. Chem., 272, 20108–20117.

  • Jhiang SM, Cho JY, Furminger TL, Sagartz JE, Tong Q, Capen CC and Mazzaferri EL . (1998). Recent Results Cancer Res., 154, 265–270.

  • Jiang SW, Dong M, Trujillo MA, Miller LJ and Eberhardt NL . (2001). J. Biol. Chem., 276, 23464–23470.

  • Jones CJ, Kipling D, Morris M, Hepburn P, Skinner J, Bounacer A, Wyllie FS, Ivan M, Bartek J, Wynford-Thomas D and Bond JA . (2000). Mol. Cell. Biol., 20, 5690–5699.

  • Knudson AG . (2001). Nat. Rev. Cancer, 1, 157–162.

  • Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM and Fletcher JA . (2000). Science, 289, 1357–1360.

  • Kubota T, Koshizuka K, Williamson EA, Asou H, Said JW, Holden S, Miyoshi I and Koeffler HP . (1998). Cancer Res., 58, 3344–3352.

  • Lemoine NR, Mayall ES, Jones T, Sheer D, McDermid S, Kendall-Taylor P and Wynford-Thomas D . (1989). Br. J. Cancer, 60, 897–903.

  • Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T, Sobrinho LG and Leite V . (2002). J. Clin. Endocrinol. Metab., 87, 3947–3952.

  • Martelli ML, Iuliano R, Le Pera I, Sama I, Monaco C, Cammarota S, Kroll T, Chiariotti L, Santoro M and Fusco A . (2002). J. Clin. Endocrinol. Metab., 87, 4728–4735.

  • Mascia A, Nitsch L, Di Lauro R and Zannini M . (2002). J. Endocrinol., 172, 163–176.

  • Meriane M, Charrasse S, Comunale F, Mery A, Fort P, Roux P and Gauthier-Rouviere C . (2002). Oncogene, 21, 2901–2907.

  • Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M, Fletcher C, Singer S and Spiegelman BM . (1998). Mol. Cell, 1, 465–470.

  • Mueller E, Smith M, Sarraf P, Kroll T, Aiyer A, Kaufman DS, Oh W, Demetri G, Figg WD, Zhou XP, Eng C, Spiegelman BM and Kantoff PW . (2000). Proc. Natl. Acad. Sci. USA, 97, 10990–10995.

  • Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG and Nikiforov YE . (2002). Am J. Surg. Pathol., 26, 1016–1023.

  • Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW, Tallini G, Kroll TG and Nikiforov YE . (2003). J. Clin. Endocrinol. Metab., 88, 2318–2326.

  • Ohno M, Zannini M, Levy O, Carrasco N and di Lauro R . (1999). Mol. Cell. Biol., 19, 2051–2060.

  • Ohta T, Elnemr A, Yamamoto M, Ninomiya I, Fushida S, Nishimura G, Fujimura T, Kitagawa H, Kayahara M, Shimizu K, Yi S and Miwa K . (2002). Int. J. Oncol., 21, 37–42.

  • Poleev A, Wendler F, Fickenscher H, Zannini MS, Yaginuma K, Abbott C and Plachov D . (1995). Eur. J. Biochem., 228, 899–911.

  • Santelli G, de Franciscis V, Portella G, Chiappetta G, D'Alessio A, Califano D, Rosati R, Mineo A, Monaco C and Manzo G . (1993). Cancer Res., 53, 5523–5527.

  • Santoro M, Grieco M, Melillo RM, Fusco A and Vecchio G . (1995). Eur. J. Endocrinol., 133, 513–522.

  • Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Singer S, Fletcher C and Spiegelman BM . (1998). Nat. Med., 4, 1046–1052.

  • Sarraf P, Mueller E, Smith WM, Wright HM, Kum JB, Aaltonen LA, de la Chapelle A, Spiegelman BM and Eng C . (1999). Mol. Cell, 3, 799–804.

  • Satoh T, Toyoda M, Hoshino H, Monden T, Yamada M, Shimizu H, Miyamoto K and Mori M . (2002). Oncogene, 21, 2171–2180.

  • Takashima T, Fujiwara Y, Higuchi K, Arakawa T, Yano Y, Hasuma T and Otani S . (2001). Int. J. Oncol., 19, 465–471.

  • Vilain C, Rydlewski C, Duprez L, Heinrichs C, Abramowicz M, Malvaux P, Renneboog B, Parma J, Costagliola S and Vassart G . (2001). J. Clin. Endocrinol. Metab., 86, 234–238.

Download references

Acknowledgements

We thank Drs Nita Maihle and Raul Urrutia for assistance with the soft agar colony assays and NIH 3T3 cell focus assays, respectively. This work was supported by NIH grant CA80117 (NLE), the Mayo Foundation, and the Endocrine Society 2002 Abbott Thyroid Research Clinical Mentor Award (BM) and the Abbott Thyroid Research Clinical Fellowship Award (JGP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman L Eberhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory Powell, J., Wang, X., Allard, B. et al. The PAX8/PPARγ fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARγ inhibition. Oncogene 23, 3634–3641 (2004). https://doi.org/10.1038/sj.onc.1207399

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207399

Keywords

This article is cited by

Search

Quick links