Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes

Abstract

Mutation of the p53 tumor suppressor gene is the most common genetic alteration in human cancer. A majority of these mutations are missense mutations in the DNA-binding domain. As a result, the mutated p53 gene encodes a full-length protein incapable of transactivating its target genes. In addition to this loss of function, mutant p53 can have a dominant negative effect over wild-type p53 and/or gain of function activity independently of the wild-type protein. To better understand the nature of the tumorigenic activity of mutant p53, we have investigated the mechanism by which mutant p53 can exert a dominant negative effect. We have established several stable cell lines capable of inducibly expressing a p53 mutant alone, wild-type p53 alone, or both proteins concurrently. In this context, we have used chromatin immunoprecipitation to determine the ability of wild-type p53 to bind to its endogenous target genes in the presence of various p53 mutants. We have found that p53 missense mutants markedly reduce the binding of wild-type p53 to the p53 responsive element in the target genes of p21, MDM2, and PIG3. These findings correlate with the reduced ability of wild-type p53 in inducing these and other endogenous target genes and growth suppression in the presence of mutant p53. We also showed that mutant p53 suppresses the ability of wild-type p53 in inducing cell cycle arrest. This highlights the sensitivity and utility of the dual inducible expression system because in previous studies, p53-mediated cell cycle arrest is not affected by transiently overexpressed p53 mutants. Together, our data showed that mutant p53 exerts its dominant negative activity by abrogating the DNA binding, and subsequently the growth suppression, functions of wild-type p53.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  • Atema A and Chene P . (2002). Cancer Lett., 185, 103–109.

  • Aurelio ON, Kong XT, Gupta S and Stanbridge EJ . (2000). Mol. Cell. Biol., 20, 770–778.

  • Birch JM, Blair V, Kelsey AM, Evans DG, Harris M, Tricker KJ and Varley JM . (1998). Oncogene, 17, 1061–1068.

  • Blagosklonny MV . (2000). FASEB J., 14, 1901–1907.

  • Chen X, Bargonetti J and Prives C . (1995). Cancer Res., 55, 4257–4263.

  • Chen X, Ko LJ, Jayaraman L and Prives C . (1996). Genes Dev., 10, 2438–2451.

  • Chen Y, Chen PL and Lee WH . (1994). Mol. Cell. Biol., 14, 6764–6772.

  • Chene P . (1998). J. Mol. Biol., 281, 205–209.

  • Chin KV, Ueda K, Pastan I and Gottesman MM . (1992). Science, 255, 459–462.

  • Cho Y, Gorina S, Jeffrey PD and Pavletich NP . (1994). Science, 265, 346–355.

  • Delia D, Goi K, Mizutani S, Yamada T, Aiello A, Fontanella E, Lamorte G, Iwata S, Ishioka C, Krajewski S, Reed JC and Pierotti MA . (1997). Oncogene, 14, 2137–2147.

  • Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, Finlay C and Levine AJ . (1993). Nat. Genet., 4, 42–46.

  • Dohn M, Zhang S and Chen X . (2001). Oncogene, 20, 3193–3205.

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B . (1993). Cell, 75, 817–825.

  • Fort P, Marty L, Piechaczyk M, el Sabrouty S, Dani C, Jeanteur P and Blanchard JM . (1985). Nucleic Acids Res., 13, 1431–1442.

  • Frazier MW, He X, Wang J, Gu Z, Cleveland JL and Zambetti GP . (1998). Mol. Cell. Biol., 18, 3735–3743.

  • Friedlander P, Haupt Y, Prives C and Oren M . (1996). Mol. Cell. Biol., 16, 4961–4971.

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW and Giaccia AJ . (1996). Nature, 379, 88–91.

  • Harris N, Brill E, Shohat O, Prokocimer M, Wolf D, Arai N and Rotter V . (1986). Mol. Cell. Biol., 6, 4650–4656.

  • Harvey M, Vogel H, Morris D, Bradley A, Bernstein A and Donehower LA . (1995). Nat. Genet., 9, 305–311.

  • Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith-Sorensen B, Montesano R and Harris CC . (1994). Nucleic Acids Res., 22, 3551–3555.

  • Horikoshi N, Usheva A, Chen J, Levine AJ, Weinmann R and Shenk T . (1995). Mol. Cell. Biol., 15, 227–234.

  • Hsiao M, Low J, Dorn E, Ku D, Pattengale P, Yeargin J and Haas M . (1994). Am J Pathol, 145, 702–714.

  • Hussain SP and Harris CC . (1998). Cancer Res., 58, 4023–4037.

  • Joers A, Kristjuhan A, Kadaja L and Maimets T . (1998). Oncogene, 17, 2351–2358.

  • Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW and Vogelstein B . (1992). Science, 256, 827–830.

  • Ko LJ and Prives C . (1996). Genes Dev., 10, 1054–1072.

  • Legros Y, Meyer A, Ory K and Soussi T . (1994). Oncogene, 9, 3689–3694.

  • Levine AJ, Momand J and Finlay CA . (1991). Nature, 351, 453–456.

  • Lin J, Teresky AK and Levine AJ . (1995). Oncogene, 10, 2387–2390.

  • Liu G and Chen X . (2002). Oncogene, 21, 7195–7204.

  • Liu G, McDonnell TJ, Montes de Oca Luna R, Kapoor M, Mims B, El-Naggar AK and Lozano G . (2000). Proc Natl Acad Sci USA, 97, 4174–4179.

  • Lowe SW and Ruley HE . (1993). Genes Dev., 7, 535–545.

  • Lu H and Levine AJ . (1995). Proc Natl Acad Sci USA, 92, 5154–5158.

  • Ludwig RL, Bates S and Vousden KH . (1996). Mol. Cell. Biol., 16, 4952–4960.

  • Marutani M, Tonoki H, Tada M, Takahashi M, Kashiwazaki H, Hida Y, Hamada J, Asaka M and Moriuchi T . (1999). Cancer Res., 59, 4765–4769.

  • Milner J and Medcalf EA . (1991). Cell, 65, 765–774.

  • Milner J, Medcalf EA and Cook AC . (1991). Mol. Cell. Biol., 11, 12–19.

  • Monti P, Campomenosi P, Ciribilli Y, Iannone R, Inga A, Abbondandolo A, Resnick MA and Fronza G . (2002). Oncogene, 21, 1641–1648.

  • Morgenstern JP and Land H . (1990). Nucleic Acids Res., 18, 3587–3596.

  • Nelson WG and Kastan MB . (1994). Mol. Cell. Biol., 14, 1815–1823.

  • Nicholls CD, McLure KG, Shields MA and Lee PW . (2002). J. Biol. Chem., 277, 12937–12945.

  • Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW and Vogelstein B . (1993). Nature, 362, 857–860.

  • Ory K, Legros Y, Auguin C and Soussi T . (1994). EMBO J., 13, 3496–3504.

  • Peng Y, Chen L, Li C, Lu W, Agrawal S and Chen J . (2001). J. Biol. Chem., 276, 6874–6878.

  • Prives C and Hall PA . (1999). J. Pathol., 187, 112–126.

  • Qian H, Wang T, Naumovski L, Lopez CD and Brachmann RK . (2002). Oncogene, 21, 7901–7911.

  • Rolley N, Butcher S and Milner J . (1995). Oncogene, 11, 763–770.

  • Ryan KM and Vousden KH . (1998). Mol. Cell. Biol., 18, 3692–3698.

  • Sambrook J, Maniatis T and Fritsch EF . (1989). Molecular Cloning: a Laboratory Manual, 2 edn. Cold Spring Harbor Laboratory: Cold Spring Harbor, NY.

    Google Scholar 

  • Szak ST, Mays D and Pietenpol JA . (2001). Mol. Cell. Biol., 21, 3375–3386.

  • Wang XW, Yeh H, Schaeffer L, Roy R, Moncollin V, Egly JM, Wang Z, Freidberg EC, Evans MK, Taffe BG, Bohr VA, Weeda G, Hoeijmakers JHJ, Forrester K and Harris CC . (1995). Nat. Genet., 10, 188–195.

  • Willis AC, Pipes T, Zhu J and Chen X . (2003). Oncogene, 22, 5481–5495.

  • Xiao H, Pearson A, Coulombe B, Truant R, Zhang S, Regier JL, Triezenberg SJ, Reinberg D, Flores O and Ingles CJ . (1994). Mol. Cell. Biol., 14, 7013–7024.

  • Zhu J, Jiang J, Zhou W and Chen X . (1998). Cancer Res., 58, 5061–5065.

Download references

Acknowledgements

This work is supported in part by NIH Grant 2 RO1 CA076069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbin Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Willis, A., Jung, E., Wakefield, T. et al. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 23, 2330–2338 (2004). https://doi.org/10.1038/sj.onc.1207396

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207396

Keywords

  • p53
  • mutant p53
  • cell cycle arrest
  • transcription

This article is cited by

Search

Quick links