Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

NGF activation of TrkA decreases N-myc expression via MAPK path leading to a decrease in neuroblastoma cell number

Abstract

In neuroblastoma (NB), expression of the TrkA receptor is correlated with good prognosis while N-myc amplification is correlated with poor prognosis. Decreased N-myc levels are key to controlling growth and inducing differentiation in NB cells. In this report, we detail mechanisms by which nerve growth factor (NGF) decreases N-myc levels in TrkA-transfected NB cells and its effect on NB cell proliferation. NGF induced a decrease in N-myc mRNA within 1 h of treatment that occurred in the presence of cycloheximide. The stability of N-myc mRNA was not affected by NGF, indicating a transcriptional control of N-myc mRNA by NGF. NGF but not brain-derived neurotrophic factor (BDNF) decreased N-myc levels demonstrating that p75 alone was not involved. The NGF-induced decrease in N-myc expression was blocked by the Trk tyrosine kinase (TK) antagonist K252a indicating that signals transduced by Trk TK downstream targets were involved. Pharmacologic inhibitors implicated the mitogen-activated protein kinase (MAPK) path. This was supported by the finding that expression of a constitutively activated component of the MAPK path, MAPK kinase (MEK), decreased N-myc levels. Alterations in the level of N-myc are known to alter NB cell cycle progression by affecting the levels of E2Fs and p27kip1. Consistent with these findings, NGF decreased NB cell number and decreased cyclin E-dependent kinase activity via an increase in p27kip1. Thus, our results indicate that the MAP kinase is selectively involved in the NGF-induced N-myc downregulation through a transcriptional mechanism. Furthermore, NGF affects the time required for 15N TrkA cells to complete a replication cycle by decreasing N-myc, E2Fs, cyclin E kinase activity and increasing p27kip1 binding to cyclin E kinase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adams MR, Sears R, Nuckolls F, Leone G and Nevins JR . (2000). Mol. Cell. Biol., 20, 3633–3639.

  • Amati B, Frank SR, Donjerkovic D and Taubert S . (2001). Biochim. Biophys. Acta, 1471, M135–M145.

  • Azar CG, Scavarda NJ, Reynolds CP and Brodeur M . (1990). Cell Growth Differ., 1, 421–428.

  • Beier R, Burgin A, Kiermaier A, Fero M, Karsunky H, Saffrich R, Moroy T, Ansorge W, Roberts J and Eilers M . (2000). EMBO J., 19, 5813–5823.

  • Berns K, Martins C, Dannenberg JH, Berns A, Riele Ht and Bernards R . (2000). Oncogene, 19, 4822–4827.

  • Billon N, van Grunsven LA and Rudkin BB . (1996). Oncogene, 13, 2047–2054.

  • Bogenmann E, Peterson S, Maekawa K and Matsushima H . (1998). Oncogene, 17, 2367–2376.

  • Borello MG, Bongarzone I, Pierotti MA, Luksch R, Gasparini M, Collini P, Pilotti S, Rizzetti MG, Mondellini P, De Bernardi B, Di Martino D, Garaventa A, Brisigotti M and Tonin GP . (1993). Int. J. Cancer, 54, 540–545.

  • Bulseco DA, Poluha W, Schonhoff CM, Daou MC, Condon PJ and Ross AH . (2001). J. Cell. Biochem., 81, 193–204.

  • Chambery D, Mohseni-Zadeh S, de Galle B and Babajko S . (1999). Cancer Res., 59, 2898–2902.

  • Ciccarone V, Spengler BA, Meyers MB, Biedler JL and Ross R . (1989). Cancer Res., 49, 219–225.

  • Dechant G . (2001). Cell Tissue Res., 305, 229–238.

  • Decker SJ . (1995). J. Biol. Chem., 270, 30841–30844.

  • Dobashi Y, Kudoh T, Matsumine A, Toyoshima K and Akiyama T . (1995). J. Biol. Chem., 270, 23031–23037.

  • Fan L, Iyer J, Zhu S, Frick KK, Wada RK, Eskenazi AE, Berg PE, Ikegaki N, Kennett RH and Frantz CN . (2001). Cancer Res., 61, 1073–1079.

  • Hartman DS and Hertel C . (1994). J. Neurochem., 63, 1261–1270.

  • Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM and Felsher DW . (2002). Science, 297, 102–104.

  • Kao S, Jaiswal RK, Kolch W and Landreth GE . (2001). J. Biol. Chem., 276, 18169–18177.

  • Kihara-Negashi F, Yamamoto H, Suzuki M, Yamada T, Sakurai T, Tamura T and Oikawa T . (2001). Oncogene, 20, 6039–6047.

  • Kim B, Cheng HL, Margolis B and Feldman EL . (1998). J. Biol. Chem., 273, 34543–34550.

  • Kogner P, Barbany G, Dominici C, Castello MA, Raschella G and Persson H . (1993). Cancer Res., 53, 2044–2050.

  • Knudson Jr AG and Meadows AT . (1980). N. Engl. J. Med., 302, 1254–1256.

  • Lavenius E, Gestblom C, Johansson I, Nanberg E and Pahlman S . (1995). Cell Growth Differ., 6, 727–736.

  • Lucarelli E, Kaplan D and Thiele CJ . (1995). J. Biol. Chem., 270, 24725–24731.

  • Lutz W, Stohr M, Schurmann J, Wenzel A, Lohr A and Schwab M . (1996). Oncogene, 13, 803–812.

  • MacNicol MC and MacNicol AM . (1999). J. Biol. Chem., 274, 13193–13197.

  • Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF and Ahn NG . (1994). Science, 265, 966–970.

  • Matsumoto K, Wada RK, Yamshiro JM, Kaplan DR and Thiele CJ . (1995). Cancer Res., 55, 1798–1806.

  • Matsuo T and Thiele CJ . (1998). Oncogene, 16, 3337–3343.

  • Matsushima H and Bogenmann E . (1993). Mol. Cell. Biol., 13, 7447–7456.

  • Miller FD and Kaplan DR . (2000). Curr. Opin. Neurobiol., 10, 381–391.

  • Misawa A, Hosoi H, Arimoto A, Shikata T, Akioka S, Matsumura T, Houghton PJ and Sawada T . (2000). Cancer Res., 60, 64–69.

  • Misawa A, Hosoi H, Tsuchuya K and Sugimoto T . (2003). Int. J. Cancer, 104, 233–237.

  • Nakagawara A, Nakagawara-Arima M, Scavarda NJ, Azar CG, Canto AB and Brodeur M . (1993). N. Engl. J. Med., 328, 847–854.

  • Nakamura M, Matsuo T, Stauffer J, Neckers L and Thiele CJ . (2003). Cell Death Differ., 10, 230–239.

  • Ong SH, Guy GR, Hadari YR, Laks S, Gotoh N, Sclessinger J and Lax I . (2000). Mol. Cell. Biol., 20, 979–989.

  • Persengiev SP, Kondova II and Kilpatrick DL . (1999). Mol. Cell. Biol., 19, 6048–6056.

  • Persengiev SP, Li J, Poulin ML and Kilpatrick DL . (2001). Oncogene, 20, 5124–5131.

  • Poluha W, Poluha DK, Chang B, Crosbie NE, Schonhoff CM, Kilpatrick DL and Ross AH . (1996). Mol. Cell. Biol., 16, 1335–1341.

  • Poluha W, Poluha DK and Ross AH . (1995). Oncogene, 10, 185–189.

  • Pumiglia KM and Decker SJ . (1997). Proc. Natl. Acad. Sci. USA, 94, 448–452.

  • Reynolds CP, Biedler JL, Spengler BA, Reynolds DA, Ross RA, Frenkel EP and Smith RG . (1986). J. Natl. Cancer Inst., 76, 375–387.

  • Santoni-Rugiu E, Falck J, Mailand N, Bartek J and Lukas J . (2000). Mol. Cell. Biol., 20, 3497–3509.

  • Skolnik EY, Lee CH, Batzer A, Vincentini LM, Zhou M, Daly R, Myers Jr MG, Baker JM, Ullrich A, White MF and Schlessinger J . (1993). EMBO J., 12, 1929–1936.

  • Sherr CJ . (1993). Cell, 73, 1059–1065.

  • Strieder V and Lutz W . (2002). Cancer Lett., 180, 107–119.

  • Strieder V and Lutz W . (2003). J. Biol. Chem., 278, 2983–2989.

  • Suzuki T, Bogenmann E, Shimada H, Stram D and Seeger RC . (1993). J. Natl. Cancer Inst., 85, 337–384.

  • Thiele CJ, Deutsch LA and Israel MA . (1988). Oncogene, 3, 281–288.

  • Thiele CJ, Reynolds CP and Israel MA . (1985). Nature, 313, 404–406.

  • Tsygankova OM, Saavedra A, Rebhun JF, Quilliam LA and Meinkoth JL . (2001). Mol. Cell. Biol., 21, 1921–1929.

  • van Grunsven LA, Billon N, Savatier P, Thomas A, Urdiales JL and Rubkin BB . (1996). Oncogene, 12, 1347–1356.

  • Veenstra TD, Windebank AJ and Kumar R . (1997). Biochem. Biophys. Res. Commun., 235, 15–18.

  • Wada RK, Seeger RC, Reynolds P, Alloggiamento T, Yamashiro JM, Ruland C, Black AC and Rosenblatt JD . (1992). Oncogene, 7, 711–717.

  • Wittrock J, Schweizer P and Girgert R . (2002). Anticancer Res., 22, 4205–4209.

  • Wu C, Lai CF and Mobley WC . (2001). J. Neurosci., 21, 5406–5416.

  • Yang SH, Bumpass DC, Perkins ND and Sharrocks AD . (2002). Mol. Cell. Biol., 21, 5036–5046.

  • York RD, Yao H, Dillon T, Ellig CL, Eckert SP, McCleskey EW and Stork PJS . (1998). Nature, 392, 622–626.

  • Zhang X, Xing G and Saunders GF . (1999). Anticancer Res., 19, 1641–1648.

Download references

Acknowledgements

We thank Natalie G Ahn (Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA) for the gift of the mutant MEK (MAPKK) plasmids; Uimook Choi for assistance with the transfection experiments; Tatsuya Matsuo for assistance with cell cycle experiment; Kim Mott for helpful assistance; Mitsunari Nakamura, Xuezhong Yang, Jimmy Stauffer, Jerry Jaboin and Arvind Ingle for technical assistance; and David Kaplan for helpful discussion. Dr Woo received partial support from the Department of Pediatrics of the Korea University Hospital and the Korea University College of Medicine Alumni Association of USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol J Thiele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, CW., Lucarelli, E. & Thiele, C. NGF activation of TrkA decreases N-myc expression via MAPK path leading to a decrease in neuroblastoma cell number. Oncogene 23, 1522–1530 (2004). https://doi.org/10.1038/sj.onc.1207267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207267

Keywords

This article is cited by

Search

Quick links