Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Activation of cyclin D1 expression by the ERK5 cascade

Abstract

Transcriptional activation of the cyclin D1 gene is a key step in cell proliferation. Accordingly, cyclin D1 overexpression is frequently an early step in neoplastic transformation, particularly in mammary epithelium. Numerous studies have linked elevated cyclin D1 promoter activity to a sustained activation of the ERK1/2 cascade. Here we show that the ERK5 cascade, a distinct mitogen-induced MAPK pathway, can also drive cyclin D1 expression. In CCL39 cells, serum induces a strong, prolonged peak of ERK1/2 and ERK5 phosphorylation, and subsequently elevates cyclin D1 mRNA and protein levels. Overexpression of constitutively active MEK5 and wt ERK5 induces a cyclin D1 reporter gene (D1 −973-luciferase) at least as well as constitutively active MEK1. Activation is blocked by kinase-dead mutants of ERK5 and ERK2, respectively. Mutation of the CRE at −50 in the cyclin D1 promoter decreases activation by the ERK5 but not the ERK1/2 cascade. Importantly, expression of kinase-dead ERK5 diminishes endogenous cyclin D1 protein induction by serum in CCL39 cells and the breast cancer cell lines MCF-7 and HS579. These data identify the cyclin D1 gene as a novel target of the ERK5 cascade, an observation with important implications in cancers involving cyclin D1 deregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ahn S, Olive M, Aggarwal S, Krylov D, Ginty D and Vinson C . (1998). Mol. Cell. Biol., 18, 967–977.

    Article  CAS  Google Scholar 

  • Albanese C, D'Amico M, Reutens AT, Fu M, Watanabe G, Lee R, Kitsis R, Henglein B, Avantaggiati M, Somasundaram K, Thimmapaya B, Pestell and R . (1999). J. Biol. Chem., 274, 34186–34195.

    Article  CAS  Google Scholar 

  • Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A and Pestell R . (1995). J. Biol. Chem., 270, 23589–23597.

    Article  CAS  Google Scholar 

  • Bakiri L, Lallemand D, Bossy-Wetzel E and Yaniv M . (2000). EMBO J., 19, 2056–2068.

  • Balmanno K and Cook S . (1999). Oncogene, 18, 3085–3097.

    Article  CAS  Google Scholar 

  • Bartkova J, Lukas J, Muller H, Lutzhoft D, Strauss M and Bartek J . (1994). Int. J. Cancer., 57, 353–361.

    Article  CAS  Google Scholar 

  • Beier F, Lee R, Taylor A, Pestell R, LuValle and P . (1999). Proc. Natl. Acad. Sci. USA, 96, 1433–1438.

  • Boulon S, Dantonel J, Binet V, Vie A, Blanchard J, Hipskind R and Philips A . (2002). Mol. Cell. Biol., 22, 7769–7779.

  • Brown J, Nigh E, Lee R, Ye H, Thompson M, Saudou F, Pestell R and Greenberg M . (1998). Mol. Cell. Biol., 18, 5609–5619.

    Article  CAS  Google Scholar 

  • Brunet A, Pages G and Pouyssegur J . (1994). Oncogene, 9, 3379–3387.

  • D'Amico M, Hulit J, Amanatullah D, Zafonte B, Albanese C, Bouzahzah B, Fu M, Augenlicht L, Donehower L, Takemaru K, Moon R, Davis R, Lisanti M, Shtutman M, Zhurinsky J, Ben-Ze'ev A, Troussard A, Dedhar S and Pestell R . (2000). J. Biol. Chem., 275, 32649–32657.

    Article  CAS  Google Scholar 

  • Deak M, Clifton A, Lucocq L and Alessi D . (1998). EMBO. J., 17, 4426–4441.

  • Dickson C, Fantl V, Gillett C, Brookes S, Bartek J, Smith R, Fisher C, Barnes D and Peters G . (1995). Cancer Lett., 90, 43–50.

  • English J, Pearson G, Baer R and Cobb M . (1998). J. Biol. Chem., 273, 3854–3860.

    Article  CAS  Google Scholar 

  • Esparis-Ogando A, Diaz-Rodriguez E, Montero J, Yuste L, Crespo P and Pandiella A . (2002). Mol. Cell. Biol., 22, 270–285.

  • Gillett C, Smith P, Gregory W, Richards M, Millis R, Peters G and Barnes D . (1996). Int. J. Cancer., 69, 92–99.

    Article  CAS  Google Scholar 

  • Guttridge D, Albanese C, Reuther J, Pestell R and Baldwin Jr A . (1999). Mol. Cell. Biol., 19, 5785–5799.

    Article  CAS  Google Scholar 

  • Hamel PA and Hanley-Hyde J . (1997). Cancer. Invest., 15, 143–152.

  • Han T and Prywes R . (1995). Mol. Cell. Biol., 15, 2907–2915.

    Article  CAS  Google Scholar 

  • Hateboer G, Wobst A, Petersen B, Le Cam L, Vigo E, Sardet C and Helin K . (1998). Mol. Cell. Biol., 18, 6679–6697.

    Article  CAS  Google Scholar 

  • Henry D, Moskalenko S, Kaur K, Fu M, Pestell R, Camonis J and White M . (2000). Mol. Cell. Biol., 20, 8084–8092.

  • Herber B, Truss M, Beato M and Muller R . (1994). Oncogene, 9, 2105–2117.

  • Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C and Strauss M . (1999). Mol. Cell. Biol., 19, 2690–2698.

    Article  CAS  Google Scholar 

  • Hipskind R, Baccarini M and Nordheim A . (1994). Mol. Cell. Biol., 14, 6219–6231.

    Article  CAS  Google Scholar 

  • Janknecht R and Hunter T . (1996). Curr. Biol., 6, 951–954.

  • Joyce D, Bouzahzah B, Fu M, Albanese C, D'Amico M, Steer J, Klein J, Lee R, Segall J, Westwick J, Der C and Pestell R . (1999). J. Biol. Chem., 274, 25245–25249.

    Article  CAS  Google Scholar 

  • Kato Y, Chao T, Hayashi M, Tapping R and Lee J . (2000). Immunol. Res., 21, 233–237.

  • Kato Y, Kravchenko V, Tapping R, Han J, Ulevitch R and Lee J . (1997). EMBO J., 16, 7054–7066.

  • Kato Y, Tapping R, Huang S, Watson M, Ulevitch R and Lee J . (1998). Nature, 395, 713–716.

    Article  CAS  Google Scholar 

  • Lavoie J, L'Allemain G, Brunet A, Muller R and Pouyssegur J . (1996. J. Biol. Chem., 271, 20608–20616.

    Article  CAS  Google Scholar 

  • Lee R, Albanese C, Fu M, D'Amico M, Lin B, Watanabe G, Haines III G, Siegel P, Hung M, Yarden Y, Horowitz JM, Muller W and Pestell R . (2000). Mol. Cell. Biol., 20, 672–683.

  • Lee R, Albanese C, Stenger R, Watanabe G, Inghirami G, Haines III G, Webster M, Muller W, Brugge J, Davis R and Pestell R . (1999). J. Biol. Chem., 274, 7341–7350.

    Article  CAS  Google Scholar 

  • Marinissen M, Chiariello M, Pallante M and Gutkind J . (1999). Mol. Cell. Biol., 19, 4289–4301.

    Article  CAS  Google Scholar 

  • McIntosh G, Anderson J, Milton I, Steward M, Parr A, Thomas M, Henry J, Angus B, Lennard T and Horne C . (1995). Oncogene, 11, 885–891.

  • Mody N, Leitch J, Armstrong C, Dixon J and Cohen P . (2001). FEBS Lett., 502, 21–24.

  • Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM and Arnold A . (1991). Nature, 350, 512–515.

    Article  CAS  Google Scholar 

  • Nagata D, Suzuki E, Nishimatsu H, Satonaka H, Goto A, Omata M and Hirata Y . (2001). J. Biol. Chem., 276, 662–669.

  • Page K, Li J, Corbit KC, Rumilla KM, Soh JW, Weinstein IB, Albanese C, Pestell RG, Rosner MR and Hershenson MB . (2002). Am. J. Respir. Cell. Mol. Biol., 27, 204–213.

  • Pearson G, English J, White M and Cobb M . (2001). J. Biol. Chem., 276, 7927–7931.

  • Sherr C and Roberts J . (1999). Genes. Dev., 13, 1501–1512.

  • Tetsu O and McCormick F . (1999). Nature, 398, 422–426.

    Article  CAS  Google Scholar 

  • Wang T, Cardiff R, Zukerberg L, Lees E, Arnold A and Schmidt E . (1994). Nature, 369, 669–671.

    Article  CAS  Google Scholar 

  • Watanabe G, Albanese C, Lee RJ, Reutens A, Vairo G, Henglein B and Pestell RG . (1998). Mol. Cell. Biol., 18, 3212–3222.

    Article  CAS  Google Scholar 

  • Withers DA, Harvey RC, Faust JB, Melnyk O, Carey K and Meeker TC . (1991). Mol. Cell. Biol., 11, 4846–4853.

    Article  CAS  Google Scholar 

  • Xing J, Ginty D and Greenberg M . (1996). Science, 273, 959–963.

    Article  CAS  Google Scholar 

  • Yu Q, Geng Y and Sicinski P . (2001). Nature, 411, 1017–1021.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to the many people cited in the Materials and methods section who provided plasmids and cell lines, and would especially like to thank V Dulic for his helpful comments and generosity in providing the affinity-purified cyclin D1 polyclonal antiserum. We thank A Le Cam, J-M Blanchard, E Kremer and C Sardet for their critical comments on the manuscript, and we thank our colleagues in the IGMM, in particular A Gartland, for their support during the course of this study. R Mulloy was a Chateaubriand fellow and gratefully thanks the Sociéte Française de Cancer for a short-term fellowship. This work was supported in part by the CNRS and principally by grants from the Association pour la Recherche sur le Cancer (No 5890 and 5961).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A Hipskind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulloy, R., Salinas, S., Philips, A. et al. Activation of cyclin D1 expression by the ERK5 cascade. Oncogene 22, 5387–5398 (2003). https://doi.org/10.1038/sj.onc.1206839

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206839

Keywords

This article is cited by

Search

Quick links